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I This thesis explores the possibility of designing an

electronically steerabl~e phased array antenna system using a .

LC impedance matching network and sections of transmissiom

line as an interconnection medium between pairs of radiating

elements This interconnection network would be used 
to

control the direction of the array's radiation pattern.

Adjustments of the parameters of the LC network would attempt $

to enforce a desired current distribution on the elements of '

the array, resulting in the desired radiation pattern.

Two design procedures have been investigated and are

discussed with presentation of results and sample radiation

patterns obtained. The first design method uses a Taylor's

series expansion to linearize the network equations

describing the array. The other design method utilizes an

optimization routine to systematically adjust the parameters

of the impedance matching networks until the desired current

distributions are realized as closely as possible.

J40 A

..... ' [ I '' . ... .. ...



ANALYSIS AND DESIGN
OF INTERCONNECTION NETWORKS
FOR PHASED ARRAY ANTENNAS

By

Joseph D. Downs II
B.S., University of Louisville, 1985

A Thesis
Submitted to the Faculty of the

University of Louisville
Speed Scientific School

as Partial Fulfillment of the Requirements
for the Professional Degree

p
MASTER OF ENGINEERING

Department of Electrical Engineering

January 1987

5%

p



MVWVVVV%.VQVVV

ANALYSIS AND DESIGN
OF INTERCONNECTION NETWORKS
FOR PHASED ARRAY ANTENNAS.

Submitted by: L.(~ 4
J ~seph D. Downs II

A Thesis Approved on

Date

by the Following Reading and Examination Committee:

Thesi rector, C'rroll Hill

Don d J., eeer .

Thomas L. Holloman

WaiTL. Ko



ACKNOWLEDGEMENTS

The author would like to whole heartily thank his thesis

advisor, Dr. J.C. Hill for his instruction and ideas concerning

the topics of this thesis. Appreciation is extended to the

members of the thesis committee for their work in reading the

final thesis document.

Much thanks and appreciation are also extended to the

author's brother, Mr. Woodrow F. Downs, for his help in editing

and proof reading the text of this thesis. The author's father,

Mr. Joseph D. Downs provided much assistance with problems

encountered in learning and using APL on the IBM PC during the

early development of the design procedures in this thesis.

To the author's wife, Julie Ritchie-Downs, the highest

thanks and appreciation are extended for her enduring love and

support during the year and a half of research encompassing this

thesis. Her understanding and helpfulness was a great relief to %

the author during his investigations.

I) Acces on For

VT IS 71' :x I
DTIC T,

Ju:;t 1"i .' 1 : .

I~fi

Avallabtilltv C d s..

Dist i : ,,'.



TABLE OF CONTENTS
PAGE

APPROVAL PAGE ..................................... ii

ACKOWNLEDGEMENTS .................................. iii

ABSTRACT .......................................... iv

TABLE OF CONTENTS ................................. v......v

LIST OF FIGURES ................................... vi

I. INTRODUCTION ....................................... 1

II. BEAM STEERING .................................... 2

III. FEED NETWORKS ................................... 36

A. Impedance Matching Networks ................. 38

B. Phased Array Design ......................... 45

C. Design Example ............................... 51

D. Conclusion ................................... 59

IV. ANALYSIS PROCEDURE .............................. 60

A. Transmission Line Equations ................. 60

B. Mutual Impedance Equations ................... 63

C. PI Network Equations ......................... 65

D. Results ................................... 73

E. Summury ................................... 76

V. DESIGN BY LINEARIZATION ......................... 78

A. Design Equations .......................... 81

B. Taylor's Series Expansion .................... 83

C. Results .................................... 89

D. Conclusions .................................... 94

VI. DIRECT SEARCH OPTIMIZATION ........................ 98

V



A. General Operation of Hiliclimber.............. 99

B. Hiliclimber's Control Procedures............. 104

C. Hill Height Not Changing...................... 105

D. Periodic Pattern Detection.................... 107

E. False Pattern Detection....................... 113

F. Step Size Enlargement......................... 113

G. Step Size Boundaries.......................... 114

AH. Procedure Summary............................. 115

I. Results........................................ 116

J. Conclusions.................................... 119

VII. CONSTRAINED "ANALYSIS ............................. 121

A. Hill Height Defined........................... 122

B. Results........................................ 125

B. Conculsions.................................... 137

VIII. CONCLUSIONS AND RECOMMENDATIONS................. 139

REFERENCES.............................................. 145

BIBLIOGRAPHY............................................ 147

APPENDIX A .............................................. 149

APPENDIX B .............................................. 167

APPENDIX C .............................................. 174

APPENDIX D............................................... 183

APPENDIX E............................................... 196

VITA................................ .................... 222

vi 1



LIST OF FIGURES

FIGURE 1 - Three Element Triangular Array

FIGURE 2 - Three Element Array Patttern

FIGURE 3 - Five Element Array Pattern

FIGURE 4 - PI Network of Interconnection Medium

FIGURE 5 - Unique Phased Array Antenna System

FIGURE 6 - Graphical Representation of Newton's Method

FIGURE 7 - EM Field Intensity

FIGURE 8 - Geometric Phase Shift

FIGURE 9 - Broadside Radiation Pattern

FIGURE 10 - Endfire Radiation Pattern

FIGURE 11 - Cardiod Radiation Pattern

FIGURE 12 - 3 Element Radiation Pattern
(em=60 and n  

2 7 0)

FIGURE 13 - 5 Element Radiation Pattern
(em = 240 anden = 0)

FIGURE 14 - General Diagram of PI Network

FIGURE 15 - Resulting PI Network for R1 = 50 & R2 = 100

FIGURE 16 - General Diagram of a Tee Network

FIGURE 17 - Resulting TEE Network for R1 = 50 & R2  00

FIGURE 18 - PI Network Designed from Complex Impedances

FIGURE 19 - Two Element Feed Network

FIGURE 20 - Two Element Array

FIGURE 21 - PI Networks for 2 Element Antenna System

FIGURE 22 - NxN Element Array

FIGURE 23 - Pattern from Analysis Results

vii

jI



FIGURE 24 - Radiation Pattern Desired

FIGURE 25 - Pattern from Designed Parameters

FIGURE 26 - Pattern with Zero Resistive Components

FIGURE 27 - Level Curves of Equation 6.1

FIGURE 28 - Sequential Movement of Arguments X1 & X2

FIGURE 29 - Periodic Behavior in the X2 Argument

FIGURE 30 - Periodic Behavior in both Arguments X1 &

FIGURE 31 - Desired Pattern (Em = 60 & n = 180)
FIGURE 32 - Pattern from 3 Inductor Problem

FIGURE 33 - Pattern from 6 Capacitor Problem

FIGURE 34 - Pattern from Nine Parameter Adjustment

K

IV

V

"S

S.,



- - .. R..VT u- A- 1 A

I. INTRODUCTION

An antenna is a device used in the transmission

and reception of electromagnetic energy. Sometimes, as is

the case with most broadcast radio stations, transmission

is done most effectively and economically with a single

radiating element. However, when an application requires

higher gain, directivity, steerability, or other

characteristics that a single element cannot provide, an

antenna array consisting of several radiating elements may

be necessary to satisfy one's requirements. In the field

of amateur radio, phased array antennas are used quite

frequently to provide the user with the type of radiation

pattern desired. Also, the military has used large antenna

arrays for defense against ballistic missiles and in the

surveillance and tracking of objects in space.

Another group that has recently become interested

in the use of phased arrays is the air traffic control

community. Since World War II, simple mechanically steered

antennas have been used for air traffic control, but with

the enormous increase in the number of takeoffs and

landings, types of aircraft, and increase in their speeds,

the potential use for computer controlled phased arrays is

quite evident.

In an antenna array consisting of a single type of

-p.



2

radiating element, there are generally four parameters

that can be adjusted: the number of radiating elements,

the spatial distribution of the elements, the amplitude,

and the phase of the currents used to excite the elements.

When considering the synthesis of a phased array

antenna system, there are two basic requirements that must

be met. First, determination of the current distribution

on each element of the array that will produce the desired

radiation pattern must be done. The second task, which is

extensively explored in this thesis, is the determination

of the proper impedance transfurming and phase shifting

networks needed to produce the desired current

distribution on the array. Traditionally, in the simple

arrays found in broadcast and amateur radio, the impedance

transforming and phase shifting medium is a transmission

line connected between the individual array element and

the transmitter.

In this thesis, a method for calculating the

current distribution for a desired radiation pattern was

used as a starting point for the development of the

interconnection networks.2 This procedure allows a user

to specify a direction of maximum radiation (main lobe)

and one or more directions with a minimum amount of

radiation (nulls). This method of beam steering was
4-

adaipted to the triangular geometry of an array consisting

of three equally spaced radiating elements as shown in

-. * . . . . . . '-~
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Figure 1. The number of steerable nulls is dependent upon

the number of elements in the array: the number of nulls

is equal to half the number of elements. Therefore, the

radiation patterns in this thesis will be specified by one

null direction and a main lobe direction.

As an example of the beam steering procedure, a

radiation pattern and the corresponding current excitation

on the elements is presented in Figure 2. This pattern

was generated from an input of em = 180 degrees for the

direction of maximum radiation and en = 320 degrees for

the null direction. The radiation pattern shown in Figure

3 was generated by a 5 element array with the direction of

maximim radiation at 50 degrees and the two nulls

specified at +180 degrees and 270 degrees. 3 Note that

additional nulls may be produced in unspecified

directions.

This thesis will explore an unconventional method

of enforcing the desired current distribution on the

array. The elements are interconnected in pairs, using LC

impedance i tching networks and short sections of

transmission line as an interconnection medium between

pairs of radiating elements. The LC impedance matching

network is in 41.e form of a PI network which is assumed

lossless. This PI necwork has capacitors in the two

parallel branches and an inductor in the series branch, as

shown in Figure 4. Figure 5 shows the 3 radiating

*4 U'% * ~ %~UU'V' U"%' V ',



4-4
cI.

c~co

w:
_ 0A

co

MC

M,-W* c/

+ - L-

Lo

cui
0E

ell3

N.



5

,vim
c In

0 I0

rrD

L

L o
LW

E m

'~r- / 13
L CO

• ].C
0

w

H
LL

i h

\ J /



* * t4,W ~ * t ~ - - - -

CL6

tn-

>p
1>

41 c

Cu 0
qIb

~c

L

< C;

HCD

0) C;

L

w

IL



Xlfl~lLNXTVX~l, M-'x. m ; Wl

437

0

42

w

cc,KrM
LL



cu

cnaj

C:

L)f

)4 2

\{ '\<

~cKcu



9

elements and the proposed interconnection medium which

together define the phased array antenna system to be

analyzed and designed in this thesis.

Two independent design methods for determining the

parameters of the matching networks have been developed.

The first method developed is based on solving a set of

nonlinear design equations by an extension of Newton's

root-finding method. The word "design" as used in this

context means that the current distribution on the

elements are given, while the parameters of the PI

networks are the unknown values that need to be

calculated. Since the design equations are nonlinear, a

Taylor's series expansion procedure is used to linearize

the set of complex equations. The Taylor's series

expansion is performed about an initial guess for the

nonlinear variables and the linearized equations are then

solved using matrix inversion techniques. A new

approximation to the desired solution results from the

first iteration of this process; this new approximation is

then used as the starting point for the next iteration.

This process will be referred to from now on as the

iterative matrix solution method.

The procedure described above is similar to

Newton's Method for finding a root of f(x)=O, where an

initial guess is used as a starting point for what one

hopes will be a convergent sequence approaching reasonable

%
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values for the root in question.4 A graphical

representation of Newton's iterative root-finding

procedure is shown in Figure 6. If the iterative matrix

solution method converges, it does so very quickly, as is

the case with Newton's Method. Newton's Method can

diverge if the initial guess is not fairly close to an

acceptable solution and this is also true with the

iterative matrix solver routine. Considering the system

of equations to be evaluated Figure 6, is quite

misleading; it misrepresents the complexity of the

equations actually being dealt with in this thesis. The

24 complex equations that describe the phased array system

of this thesis are presented in Chapter Four.

Consequently, extensive use must be made of large-scale

computational techniques and resources.

The second design method presented in this thesis

is based upon the quantitative "analysis" of the phased

array system of Figure 5 with the reactive parameters of

the PI networks being given, while the current

distributions on the array become the unknowns to be

calculated. Since the nonlinearity in the first design

method was caused by the parameters of the PI networks

being unknown, the set of analysis equations are linear

and the current distributions can be solved for directly

(again, because of the number of equations being dealt

with, computer implemented matrix methods are used).

.N
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However, since a particular radiation pattern corresponds

to a specific set of relative current distributions, a

method for finding the parameters of the PI networks that

will in fact produce the desired current distributions

must be developed.

A direct search optimization procedure which

adjusts the value of the parameters of the PI networks

until the element currents are as close as possible to

their desired values was developed as a solution to this

problem. Initial guesses for the PI network parameters

are used to solve the system of complex linear equations

describing the equilateral triangular array. Three of the

unknown complex variables in this set of equations are the

current distributions for each element. The difference

between these current distributions and the given

(desired) current distributions becomes the criterion upon

which the optimization procedure bases its decisions.

This difference is then squared and is designated the hill

height magnitude. The procedure is a type of feedback

enforced optimization routine where the present values of

the current distribution on the antenna elements are

continually fed back to the decision module of the

optimization routine in order for the 'I network

parameters to be adjusted accordingly.

The unique direct search optimization method used

in the constrained "analysis" design method of Chapter

1............
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Seven was developed in this thesis as a possible tool for

solving the nonlinear and linear equations describing the

equilateral triangular array. It was developed out of

discussions with the author's thesis advisor concerning

multivariable optimization techniques.5 This routine will

adjust the value of the variables of any function

dependent upon the magnitude of the function. Since the

function's present value is based on the current values

(within the procedure) of the variables, these variables

will progress in whatever direction will lower the

magnitude of the function. The routine is adaptive; it

has the capability of increasing and decreasing the step

size of the variables. This gives the routine the power

to move the variables in small or large increments. Also,

this routine is able to detect when a variable is close to

a possible solution. A variable is close to a possible

solution when the routines decision module begins to

periodically adjust the variable's magnitude above and

below the particular magnitude that has (up to this point

in the process) resulted in the best solution. When this

oscillatory behavior is detected, the magnitude of the

changes in the variable's step size is reduced.

Early development of the first design methci was

performed in APL on a IBM PC computer, but once the

computation burden of the iterative matrix solver problem

went beyond the capabilities of the IBM PC, developement
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of the procedure was moved to FORTRAN code on a VAX 11/780

computer system. The second design method was completely

developed in FORTRAN on a VAX 8600 cluster. The linear

equation solver LEQ2C in the standard library subroutines

from the IMSL scientific subroutine package was used to

solve the matrix equations of the analysis.

In Chapter Two, the basic principles of radiation

patterns are discussed. The particular characteristics

used to determine the radiation pattern in a phased array

are listed and reviewed. The interaction of the radiating

fields from each element in the array is demonstrated and

a procedure for its calculation is presented. Chapter Two

is completed with an in depth evaluation of a method of

beam steering which allows a user to specify directions of

maximum and minimum radiation.

The methods using reactive networks for impedance

matching an antenna driving point impedance to the

characteristic impedance of a transmission line are

discussed in Chapter Three. The numerous ways of

impedance matching are listed, as well the factors used in

deciding which method is best-suited for the particular

application. Specific examples using PI and TEE impedance

matching networks are presented with calculations. A two

element vertical phased array is matched using PI networks

in an extensive presentation of the calculations involved

in the analysis of this simple array.
-.

.5
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In Chapter Four, a detailed description of the

physical and electrical characteristics of the proposed

phased array system of Figure 5 will be presented. The

equations that characterize the transmission lines, the PI

networks, the antenna mutual impedance relations, and

Kirchoff's Current Law are reviewed. The quantitative

analysis of these 24 equations, which result in a solution

for the currents on the radiating elements, is performed

at the end of Chapter Four.

Presentation of a interconnection network design

procedure, using an extension of Newton's Method for

finding the roots of a quadratic equation, will be

demonstrated in Chapter Five. Developement of the

procedure entails linearizing a set of 14 nonlinear design

equations using a Taylor's series expansion about the

initial guesses for some of the complex unknown variables.

This linearization process is shown in detail and the

resulting linear equations are listed. This chapter

concludes with example designs and the patterns produced

by those designs.

Chapter Six is an in-depth discussion of the

unique direct search optimization method developed by the

author as part of this thesis. The fundamental decision

control procedures are explained using a quadratic

function of two variables as an example. This method has
bo

been developed into a n-variable optimization routine in

'p
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the form of a FORTRAN subroutine. Example functions are

shown along with the results generated in attempting to

minimize the magnitude of their hill heights.

The direct search optimization routine is

utilized in Chapter Seven where it is applied to a

constrained "analysis" design technique. The design

technique of Chapter Seven uses the analysis equations -

that describe the equilateral phased array to try and

enforce a desired current distribution on the array

elements. Since solving the analysis equations results in

a current distributions on the elements of the array, this

design technique will use the optimization routine of

Chapter Six to adjust the choosen PI network parameters

until the desired current distribution is realized.

Sample runs of this design technique and the resulting

radiation patterns are presented and discussed.

'p.

.p.



II. BEAM STEERING IN PHASED ARRAY ANTENNA SYSTEMS

The electrical field produced by an array of

radiating elements can be determined by vector addition of

the fields produced by each individual element. Phased

array antenna systems produce a pattern with directivity

when the fields from the elements interfere constructively

in the direction of interest and cancel each other out in

the remaining areas (null directions). From a theoretical

and computational standpoint, this can be done very

easily. However, from a practical point of view, the

potential performance of the phased array can only be

approached. There are four items in a multi-element

phased array that determine the radiation pattern of the

array as a whole. These items are:6

1. The relative displacements between each of the
individual elements.

2. The amplitude of the current flowing into each
element.

3. The phase of the current flowing into each
element.

4. The radiation patterns of each individual
elements.

In this thesis, items I and 4 are assumed fixed,

and attention is focused entirely on the production of

feed currents with appropriate amplitudes and phases.

17
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The method for radiation pattern control used in

this thesis allows a user to manually input the pattern

desired by specifying directions of maximum radiation (em)

and minimum radiation (en), and receive as output the

complex currents required on each element to produce the

desired pattern. Of course, even if the proper current

distribution is on the array, the prospects for production

of exactly the desired pattern are marginal at best. The

inaccuracy of the self and mutual impedance values are d

caused by a non-infinite ground plane. The inaccuracies

associated with the measurement of the elements' input

current also contributes to the degradation of the

radiation pattern.

When evaluating radiation patterns of vertical

phased arrays, one considers the radiating elements to be

isotropic point sources. Looking down upon a single

element radiating in free space one sees an ,

omnidirectional pattern in the horizontal (azimuthal)

plane. The field intensity in any direction from the

element can be represented by a vector R/_ , where R is

the magnitude of the field in the direction 9 (see Figure

7). The angle e is defined as the angle the vector R

makes with the positive X axis in a counterclockwise

direction.

When two or more vertical elements are configured

in a geometrical pattern or array and powered from a

Li
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common source, the combination of each element's radiation

results in more radiation in some directions (constructive

interference) and less in others (destructive

interference). A radiation lobe results from constructive

interference while a null is caused by destructive

interference. Also the radiation pattern is directly

dependent on the time delay resulting from the physical

separation between the elements of an array. It is this

time delay which causes the phase shifts and leads to

constructive/destructive interference.

This time delay is also referred to as a geometric

phase shift and an equation defining this effect can be

derived using some geometric principles. Figure 8 is a %

representative drawing of two radiating elements in the XY

plane and from it one can observe quite clearly the phase

shift from a infinite observation point. From Figure 8 it

can Y hown that the angle equals

Yi
T= -an --- (2.1)

xi

where a,

or

I
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Yi
/= Tan -1 - - e (2.2)

Xi

From both elements in Figure 8 there extends

dashed lines which represent the line of observation from

infinity to each of the elements. Through the element #2

located at (Xi,Yi) and the line of observation from

element #1 there is an imaginary plane of reference which

is perpendicular to both lines of observation. This plane

of reference is used to determine the electrical distance

between it and element #1. This distance represents a

time delay and indicates that the EM radiation from

element #1 is behind or lagging the EM radiation from

element #2. The distance can be defined as

X = RCos 41

where

R= xi + Yi (2.3)

and

*1€

* ~ ~ V ~ ~ ~ ~ V - \
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2. Provided the necessary phase shift.

3. Provide the desired current.

4. Provide the desired power.

R, and R2 are the input impedance to the PI network and

they are purely resistive. The desired phase shifts

across the two networks are B1 and B2 7 I, and 12 are the

driving point currents at the base of each antenna, and

ZLl and ZL2 are the driving point impedances. The driving

point impedances for this two element array can be

calculated using the mutual impedance equations

characteristic of this array.1 9 The mutual impedances

equations for this array are

V1=I + I2 Z1 2  (3.7)

V2mIIZ22 + 12 Z2 1  (3.8)

With quarter-wave spacing of quarter-wavelength verticals

over an infinite infinitely conducting ground plane, the

self-impedances (ZIIz 22 ) and the mutual impedances

(Z 20(Z121Z2 1) have the following complex values,

Z 1= Z22= (36.5 + j21)
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located at points in a horizontal plane defined in XY

coordinates. The field intensity F at a distant point in

the direction e is the sum of fields Ei generated by each

element, 10

F Zl ~(2.5)
1

where N is defined to be the total number of radiating

elements in the array, and Ei is given by

2 2
Ei =(Exi) + (Eyi ) (2.6)

where

N
Ex = Ai Cos( e e + Gg

N
E = Ai Sin( Ege + eg

with

e(e = electrical phase

eg = geometric phase

The amplitude of the ith element's current is Ai and ee is

the phase of the ith element's input current. eg is the
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geometric phase shift caused by the elements location in

the xy plane and is defined by equation (2.4).

The magnitude of the field intensity is based in

part on the location of the elements but more importantly

on the angle of observation. Therefore the radiation

pattern at any point around the array can be computed by

calculating the total field magnitude F as a function of

(the observation angle). The calculation implied by

equation 2.5 is easily implemented in FORTRAN; a computer

program named HILPAT will calculate and plot the radiation

pattern of N vertical antennas spaced at any desired

locations in the XY plane with arbitrary excitation

currents is given in Appendix A. This program assumes the

antenna placed at the origin (0,0) in the XY plane is the

phase reference (Gel equals 0 degrees).

By definition, a null in a radiation pattern is a

direction in which the field intensity equals zero. 
1 1

Thus a null in the direction en occurs when the net field

intensity F satisfies

N
i E. =0 (2.8)

Since each Ei is a complex quantity, the above

equation implies that
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N 0i
Ai Cos( 9 e + 0 g ) = 0 (2.9)

and

Ai Sin( e + Eg = 0 (2.10)

Therefore a single null in direction En can be produced if

equations 2.9 and 2.10 are satisfied. 1 2 The 2N unknowns

(Ai , i=l to N and eei, i = 1 to N) in this nonlinear
transcendental set of equations can make solving them

quite difficult.

Solution of equations (2.9, 2.10) can be greatly

simplified if the phases Gei are known, for then (2.9) and
(2.10) become two linear equations in the variables A.

For an N antenna system with a given set of phases eei,
N/2 null directions can be produced in the radiation

pattern by solving N linear equations for the current

amplitudes A 13

Since one is also interested in the specific

direction of the "main lobe" of the pattern (particularly

when the antenna is being used for transmission), it also

will be necessary to find a set of phases that will

produce as much radiation as possible in the desired

direction. The current amplitudes A. are constrained by

:1!
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the linear equations describing the null direction and can

not be directly adjusted to provide the desired "main

lobe" direction. 14 However, the Ai s depend on the 9 ei'S,

which allows some measure of indirect control over the

main lobe.

The method for maximizing the radiation pattern in

a specific direction em uses a direct search optimization

routine. This optimization routine was used to adjust

phases 0 ei to whatever values would provide maximum

radiation in 0 m under the constraints imposed by the

specified en. Starting values for the phases 9 ei are

input by the user and after a specified number of

iteration the phases that produce maximum radiation, in

conjunction with the current amplitudes defined by En)

will be output and may be used in the plotting of the

resulting radiation pattern.

The described beam steering procedure was adapted

to the three element equilaterally spaced triangular array

in Figure 1. A computer program (NULL) was developed to

solve equations (2.9) and (2.10) for the Ai (Appendix A)

and a direct search optimization routine (MAXHC) was

utilized in the constrained amplitude, phase maximization

procedure described in the previous paragraph. Since

there are only three (N = 3) elements i- the equilateral

triangular array, only one null direction can be specified p

along with a direction of maximum radiation. This
Se
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direction of maximum radiation is of interest to a user

for both transmitting and receiving purposes. Knowing the

direction of maximum signal strength allows one to

determine the direction of the signal being sent out or

received.

The program developed for determining radiation

patterns for the 3 element array of Figure 1 was run with

varying 9m and en inputs and some resulting patterns are

shown in Figures 12 and 13. The main program MAXRAD uses

the subroutines NULL and MAXHC to generate those

resulting radiation patterns an are listed in Appendix A.

The specified null directions must be kept a reasonable

number of degrees away from the desired main lobe in order

for acceptable patterns to result. Null and main lobe

seperation angles of greater than 25 degrees provide

patterns having the best main lobe maximization results,

with the specified null always being present (because the

null locations are treated as constraints that the direct

search optimization procedure has no choice in adjusting).

The current amplitudes and phases resulting from

this beam steering method are used as input for both of

the design procedures developed in this thesis. In the

design by linearization procedure, the current amplitudes

and phases for a particular pattern are used as the given

current distributions for the array elements with the

solution of the nonlinear equations resulting in values
I.

5-

i.5
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for the unknown PI network parameters. The current

distributions are used in the constrained "analysis"

design procedure of Chapter Seven as the given (desired)

solution to the linear version of the equations describing

the test array. Since the PI network parameters are the

controlling components in this design method, they will be

adjusted by the direct search optimization routine of

Chapter Six until the desired current distributions are

realized.

The beam steering procedure or the means of

determining the current distribution for a desired

radiation pattern is of primary concern during the early

phases of designing a phased array antenna system.

Networks that will in fact produce the desired pattern are

in themselves a separate topic the designer must consider

once the current distributions for the array elements are

known. An approach to designing the phasing networks is

the primary concern of this thesis. The beam steering

procedure described above was simply adapted to the

author's three element triangular array in Figure 1.

This chapter has provided the reader with a

brief introduction into the theory behind the radiation

patterns generated in phased array antenna systems. The

following topics were discussed: the four principle

determinants of a phased array's radiation pattern, the

derivation of the equation describing the geometric phase
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shift, and the use of the direct search optimization

routine to maximize the radiation in a specified direction

(Om) while maintaining the constrained direction of

minimum radiation ( 9 n). The programs used to implement

the calculations and plotting of radiation patterns for

the equilateral array were also discussed.

! I

'



III. FEED NETWORKS FOR FIXED PATTERN

PHASED ARRAYS: PRIOR ART

When designing an antenna system, in addition to

calculating the current distributions corresponding to

the desired radiation pattern, one must construct a

network or system of networks that supplies these desired

current amplitudes and phases to each element.

Traditionally this is done using impedance matching

networks connected to the base of each antenna. These

networks produce a desired phase lag or lead to each

particular antenna while also matching the driving point

impedance of the antenna to the characteristic impedance

of the transmission line.

There are many different methods one could use to .

match the antenna driving point impedance to the

transmission line supplying the current. The decision to
use a particular method depends on many factors. Some of

the factors that need consideration are: the element 0

operating currents and voltages, the frequency of

operation, the degree of initial impedance mismatch, the

equipment available for measurement and construction of

the system, the required bandwidth, the available area for

operation and construction, and economics. The most

commonly used methods are: 15

36
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1. Design of load and feeder to have equal

impedance.

2. Use of coupling reactance networks.

3. Use of tapped transmission lines.

4. Using a series section of transmission line as an

impedance transformer.

5. The use of a stub section of transmission line as

a reactance in parallel with the power source

at a point where the impedance at that particular

point will be equal to the lines charactersitic

impedance.

6. The use of a reactance component in place of a

stub line and electrically equivalent to it.

7. The use of a coupled section of line in parallel

with the power source with the length needed to

reflect the correct amount of reactance into the

main power source at the point where an impedance

match would occur.

8. The use of a tapered transmission line as a

broadband impedance matching transformer.

A vertical antenna of fixed frequency is used most

often at broadcast radio stations and is usually matched

using a coupling network of reactances in series with the

coaxial transmission line from the transmitter. Also, an

amateur radio operator interested in only one frequency of

"0" 1, e rIr N

%N&%
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operation would probably find this method of impedance

matching most practical.

A. Impedance Matching Networks

With this in mind, an example of an impedance

matching network designed to match the 50-ohm coaxial

transmission line from a transmitter to an antenna having

a purely resistive impedance of 100 + jO ohms is shown

below. A phase difference of +30 degrees, between the

transmitter current and the current flowing through the

element is incorporated into this design. Therefore, the

phase at the output lags the phase of the input by 30

degrees. A PI network, as shown in Figure 14, will be

used as an example.

Since we are assuming the network is ideally

reactive with zero losses the components of the network

ZA , ZB , and ZC can be directly computed from the formulas

below: 
16

R1 R2 Sin B
ZA =j (3.1)

R Cos B - R1 R2RI R2  B

ZB = j (3.2)
RI Cos B - R1 R2

ZC = j R1 R2 Sin B (3.3)

.5.
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B is the phase difference between the input and output

terminals of the PI networks, while R1 and R2 are the

image impedances with R1 = Rin and R2 = RL- The driving

point impedance is a more specific term for the image

impedance and it is defined as the impedance at the base

of a radiating element (vertical antenna). For our

example,

100*50 Sin(30)
ZA = j .. .= j157.31

50*Cos(30) - 100*50

100*50 Sin(30.0)
ZB = 50*Cos(30.0) - 100*50 -j91.21

ZC = 100*50 Sin(30.0) = j35.36

and the resulting network is shown in Figure 15.

If a TEE network as shown in Figure 16 is used in

place of the PI network, the following equations would

apply:17

R1 CosB - R1 R2  (

SinB

R1 Cos2 - R1 R2  (35)
SinB

R 1 R

Z 3 J 2 (3.6)
SinB
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and the resulting reactances being

ZI = j54.82

z2 = -j3l.78

Z3 = -j141.42

with the resulting network shown in Figure 17.

Usually in the design of PI or TEE matching

networks the desired input and output impedances as well

as the phase shift are known and the network components

are the unknowns.

Another design example will be presented with the

desired input and driving impedance being given as ZL = 75

- j30 and Zin = 600 + j150. The phase shift of the

network will be the difference between the phase of the

input current of the network and the phase of the base

current of the antenna of a positive 60 degrees (phase

lead). Since the B in equations (3.1-3.6) represents

phase lag, a negative B will be used in the calculations

in order to keep the signs of the network components

correct. For the PI network of figure 14 the following

values were calculated using equations 3.1, 3.2, and 3.3

after transforming the complex series input and load

impedances to their parallel equivalent circiuts.

ZA = +j155 (a 155-ohm inductor)
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ZB = -jl13 (a 133-ohm capacitor)

ZC = -j108 (a 108-ohm capacitor)

and the resulting network is shown in Figure 18

(remebering that the required network is lossless).

Application of the PI network to a specific phased

array antenna system will show how these networks are used

by an array designer to provide efficient impedance

matching with the desired phase shift in all transmission

lines leading from the transmitter to the array elements.

B. Conventional Phased Array Design

A two element vertical array with impedance

matching networks is shown in Figure 19. The following

design approach is most often used by radio broadcast

stations and amateur radio operators in the LF to HF

frequency ranges using vertical antennas positioned above

the surface of the earth (non-infinite ground plane). The

transmitter will supply power to both elements and
5-

tl-refore a PI network will be placed in series with the

transmission lines leading from the transmitter to the

antennas.18 The PI networks must accomplish four things:

1. Provide an impedance match between transmitter
and the antenna.
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472 2 iY
X = VXi + Yi Cos Tan -1 - (2.4)

1 jI

The distance X is expressed in wavelengths and can be

converted to radians by multiplying by 27T/.

Classical examples of basic radiation patterns I

producible by such simple arrays are the endfire and

broadside configurations. The broadside configuration

consists of two vertical antennas fed in phase yielding a I

radiation pattern as shown in Figure 9.7 The endfire

array also has two verticals (with the same spacing), but

they are fed 180.0 degrees out of phase. The radiation

pattern produced by this arrangement is shown in Figure

10. 8 
,

The endfire array can be varied in spacing and

phase in such a way as to produce unidirectional patterns.

When fed 90 degrees out of phase the direction of maximum 
PIN

radiation is always in line with the two verticals towards
(.

the direction of the antenna receiving the lagging

excitation. A classical example of this phenomena is the

cardiod pattern shown in Fiqure 11. This pattern was

produced with two quarter wave verticals spaced a quarter

wave apart and excited 90 degrees out of phase.
9

We now proceed to analyze a vertical phased array

consisting of N antennas. The vertical elements are

%
N.

• . , -i- - @ d . .. .... .
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Z12 = Z21= (20.4 - j14.2)

The driving point impedances of each antenna are

ZLi =V (3.9)
Ii

v 22L2  1 (3.10)

12

and the power delivered to each of the elements can be

defined in terms of the driving point currents or voltages

using

Pi = Real(Vi Ii ) (3.11)

or

2
Pi = IIij RLi (3.12)

where (i) defines the particular element in question and

RLi is the resistive component of the ith element Xiving

point impedance.2 '

Assuming each PI network will consist of

purely reactive components, the input power to the ith

network equals the output power (Pi) of each network. The

set_1
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total input power to the array can then be expressed as

P T = Z Pi (3.13)

S.nce one would want the input impedance to the array to

match the characteristic equation of the transmission

line, we have

R in = Zo0 (3.14)

and by using 50-ohm coaxial line the the expression for

the input power becomes•

2y

P T = Vin (3.15)

50

with Vin being the voltage from the transmitter. 2 2

The input power of the ith network can be used to..,

find the input impedances for each network by defining the

match ~ ~ ~ ~~ a the chrceitceutodftegtrnsission io

phase of the input voltage (Vin

3.15 then takes the following form

V . = (3.16)

in
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or

2

Pi= Real VinI (3.17)

Ri

With the phase of Vin equal to 0.0 degrees, the input

resistance to each networks must be

Ri =fVfrj 2(3.18)

pi

The PI networks must be able to match any complex

driving point impedance ZLi at the base of each antenna

with any input resistance Ri . By using the PI network in

this example, one can utilize equations (3.1-3.3) to

calculate the components of the networks once the driving

point and input impedance that result from a given current

excitation have been calculated using equations (3.12) and

(3.18). The network must also produce the desired phase

shift.

all

C. Feed Network Design Example

The design method discussed will be used in the
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following specific example. In Figure 20 there are two

quarter-wave vertical antennas spaced a quarter wave apart

above an assumed infinite ground plane. The base currents

Ii and 12 are given as desired values and in phasor form

they equal

I= 1/0 =1 12 = 1/90 =jl

With these currents the driving point impedances, using

the mutual impedance equations 3.7 and 3.8 and equations

3.9 and 3.10, are found in the following manner;

12

Z - (3.19)
L= ZII + Z12 i

- 36+j21+(20.4-j14.18)(jl)

- (36 + 14.2) + j(21.0 + 20.4)

ZL1 = 50.2 +j41.4

11
ZL2 = Z22 - + Z21(3.20)

12

=(36 +j21)(-jl)+(20.4-j14.18)

= (21.0 + 20.4) - j(36 +14.18)

ZL 2 = 41.4 - j50.2

The power for the each antenna is then solved for using

I.
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equations 3.13 and 3.14 in the following manner;

PI = II 2 RLl=I*Real[ZLl] .1* 5 0. 2 =5 0. 2 watts (3.21)

2
P2 = III RL 2=

l *Rea l [ZL2
]= l *4 1.4=4 1.4 watts (3.22)

Once the power to each network is known the input

resistance to each antenna can be found using equation

3.18 as shown below.

2 2
l ~Vinl R2 Vinl

P1 P2

where

Vin =V5*(P + 2 50*91.6 = 67.5 (3.23)

So

R1 = 91.235 ohms R2 = 110.628 ohms

The phase shift between the input and output port

of the PI networks can be calculated by converting the

complex values for ZLl and ZL 2 into phasor form. The

driving point impedances are now

,7
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ZLl 451.2)+ (41.4) n-Ta 1. ;1,--
5.2

( 2 2 51.2
ZL2 41.4) + (51.2) an -  -

with

zLi 65.8 /39.5 ZL2 = 65.8 /50.4

From the previous calculations the values for RI ,

R2 , ZLI, ZL2 are now known. The load impedances are

converted into their equivalent parallel circuits and the

parallel resistance components are be plugged into

equations (3.1 - 3.3) for R2 in order to solve for the

reactive components of the PI networks. The parallel

reactive components are coupled with the parallel branch

of the PI networks and the resulting reactance becomes the

value of the particular parallel branch on the network.

Substitution of R1 and ZL1 for R1 and R2 of equations 3.1,

3.2, and 3.3 results in

(91.2)(124.01)Sin(39.5)
ZAl =

(124.01)(Cos(39.5)) - (124.01)(91.2)

16A
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0".

(91.2)(124.01)Sin(39.5)

ZB1 j
(91.2)(Cos(39.5)) - (124.01)(91.2)

ZC= j (124.0l)(91.2) Sin(39.5)

upon completion of the computations above

ZAl = -j674.98

ZBl = -j302.46

ZC I = j67.65

The substitution of R2 and ZL2 of the other PI network for

R1 and R2 in equations 3.1, 3.2, and 3.3 take the

following form

=A (110.6)(69.56)Sin(50.4)
(69.56)(Cos(50.4)) - (69.56)(110.6)

(l10.6)(69.56)Sin(50.4)
z B2 =j

(110.6)(Cos(50.4)) - (69.56)(110.6)

ZC= j (69.56)(1i0.6)Sin(50.4)

The above computations result in

ZA2 = -j136.67

A2 P



ZB2 -- j259.56

= j67. 58

The inductance and capacitance values

corresponding to calculated reactance values for the

paramaters of the two PI networks can be found assuming a

frequency of 7 MHz with the following equations:

C 1 L XL

where

X L = a positive j( ZA or ZB or ZC)

XC = a negative j( ZA or ZB or ZC)

w =27Tf ( f = frequency)

Therefore, the PI network parameters for the two networks

are

CZA1 = 33.68pF CZA = 166.7pF

CZBl = 75.64pF CZB2 = 87.6pF

L Z1= 1.53uH LZC2 = 1.53uH

and the networks are shown in Figure 21.
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D. Conclusion

"SW-

This chapter listed many of the currently V

acceptable methods used for impedance matching in phased

array antenna systems. Discussion of PI and TEE matching

networks was presented in some detail for two reasons: PI

and TEE networks are an often used form of impedance

matching, and the PI network will be used in the

equilateral array studied in this thesis as the circuit

for controlling the radiation pattern of the array. A S

simple two element array with series PI networks was used

to correctly match the antennas feed point impedances with

the impedances being seen from the transmitter side of the S

network looking towards the individual element.

.A,
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IV. ANALYSIS OF A THREE ELEMENT PHASED ARRAY

A three element equilateral triangular phased

array antenna system was chosen to test the two design

methods developed in Chapters Five and Seven because of

the comparatively small number of radiating elements

involved. In this chapter the analysis of the three

element triangular array will be presented.

The "analysis" procedure to be demonstrated in

this chapter, as well as the "design" procedures of

Chapters Five and Seven, can be extended to larger arrays.

Figure 22 shows an NxN element array typical of larger

designs.

The three elements of the equilateral array used

throughout this thesis are quarter-wavelength vertical

antennas spaced a quarter-wavelength apart. The coaxial

transmission line connected between the pairs of elements

and in series with the PI networks has a characteristic I

impedance of 50 ohms. The array is excited by a 50-ohm

transmission line from the transmitter to element #I.

Parametern of the PI networks are assumed to be purely

reactive in all calculations.

A. Transmission Line Equations

60
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Coaxial transmission lines are inherently lossy.

The physical characteristics of the lossy transmission

lines can be described as follows:
2 4

VS = VrCOsh ZYL + IrZoSinh ZYL (4.1) .

V -

is I rCosh + _r Sinh (4.2)
Zo

Z = R + jwL (series impedance per unit length)
Y = G + jwC (shunt admittance per unit length)

Vr = receiving-end voltage (load)
Vs = sending-end voltage (generator)

Ir = receiving-end current (load)
= sending-end current (generator) p

R = reactance L = inductance ""
C = cpacitance G = leakage

However, for some communications applications in the

amateur amd broadcast radio fields, the transmission lines

can be assumed to be lossless because the actual losses in

the lines are quite small. For lossless transmission 4

lines, equations (4.1 and 4.2) take on the following

form:
2 5

ZO = Characteristic Impedance = 50+jO ohms (4.3)

27TL 2TTL I'
Vs  Vr Cos + jI rZoSin (4.4) .4

-'-
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2 7T L Vr 2TTL
is = IrCOS + j-Sin (4.5)x ~0

Equations of the above form will describe each segment of

transmission line used in the interconnection networks.

B. Mutual Impedance Equations

An antenna with current flowing in it will induce

a voltage in any other antennas in the nearby area. The

antennas will behave as though they were coupled to each

other and the induced voltage in a second antenna divided

by the current flowing in the excited antenna represents a

mutual impedance. Denoting the mutual impedance between

elements 1 and 2 by Z1 2 ' an alternative form of equation

3.7 can be written as

- vi lzi1  (4.6)

12 12

where E2 is the induced voltage in the second antenna and

is the excitation current in the first antenna (see

Figure 21). The mutual impedance is expressed in terms of

the current at the base of the first antenna and the

voltage (induced by the current in the first antenna) at

the base of the second antenna. This mutual impedance

between two elements also varies with the geometry of the
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antenna and geometry of the array. The voltage and

current relationships in arrays of elements can be

represented by summing the voltage generated in the nth

antenna caused by currents in all n antennas (extension of

equations 3.7 and 3.8), as follows:

V1 = IZ + I2Z12 ----- InZln (4.7)

V2 = I1Z12 + 12 Z2 2 ---- - InZ2n (4.8)

Vn = InZln + I2Z2n ----- InZnn (4.9)

where

Vn  = voltage applied to the base of element n.

in = base current flowing in antenna n.

Znn = self impedance of element n.

Zij = mutual impedance between antennas i and j.

The mutual impedance (Z12 ) between two antennas is

defined as the ratio of the voltage at the base of the

second antenna to the current flowing at the base of the

first antenna. The self and mutual impedance values

representing the elements of the equilateral triangular

array are calculated from theory, using an assumed current

excitation on elements of the same geometry and spacing as
.h

|A

-4 , 4 I. -. ~ 44. ~ - 4
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the array.26 Mutual impedance measurements are difficult,

as they are easily affected by the surroundings in the

area of the array and the conductivity of the earth's

surface. Therefore, these values should not be assumed

accurate and measurements should be made at the actual

constructed array with the measured values being used in

the re-evaluation of any calculations.

C. PI Network Equations

The PI network shown in Figure 4 is the form to be

used in the interconnection medium of the phased array

antenna system of Figure 5. The PI network is connected

in series with two short sections of transmission line

between each pair of elements in the array. Kirchhoff's

Voltage Law is used in the analysis of the PI network

where

1 1 -j 1 V

with XC
sC jwC wC wC

sL= jwL =jXL , with XL = wL

L = inductance C = capacitance

XL = reactive inductane in ohms
X= reactive capacitance in ohmsC
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The KCL equations at nodes #1 and #2 then can be written
as

I13A VIA (VIA - V3A) (4.10)
(I/JXcI 3 ) jXL13

I V3A (V3A - VIA)31 A  =+(4.11)

(1/jXc3I ) jXL13

After transferring XC1 3 and XC31 to the numerator of the

second component, equations (4.10) and (4.11) become

(V 1A - V3A

A3

I1 = Vl (JX c )  + (4.12)

(V3A - VIA)(4 13

131A = V3A(jXc3l) + (4.13)JXLI3

The currents (I13A and I31A) and voltages (VIA and

V3A) in (4.12) and (4.13) are complex quantities, but the

impedance representations for the inductor and capacitors

are only shown with the imaginary components (-jXL13 ,

JXcI3 , JXc3 I) because the real components are assumed to

be zero; that is, only lossless networks are being

considered here.

Combining the transmission line equations, the

- .
I

I I - C ' K 4- P r!
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effects of mutual impedance between the elements, the V

Kirchhoff's Current Law equation at the base of each

antenna, and the PI network equations yields a set of 24

complex equations describing the entire array as follows:

Mutual Impedance equations:

vI IIZII + 12 Z1 2 + 13Z13 (4.14)

V2 = IIZ 2 1 + 12 Z2 2 + 13Z23 (4.15)

V3 - IZ 3 1 + 12 Z3 2 + 13 Z3 3  (4.16)

Transmission Line equations:

p=(2TL)*3/2, L=1/8, Zo=50.0

V1 = VIACOS(p) + jzOIl 3ASin(p) (4.17)

j

113 = I13ACOS(p) + - VlASin(p) (4.18)
z

0

V3 = V3ACOs(p) + jZoi 3 1ASin(p) (4.19)

131 = 131ACOS(p) + - V3 ASin(p) (4.20)
z 

pp.
0

V1 = VIBCOS(p) + jzoI1 2BSin(p) (4.21)

j

112 = 112BCOS(p) + - V1BSin(p) (4-22)
z

0

* MiP~

-.
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V2 = V2BCOS(p) + jZoI 2 1BSin(p) (4.23)

121= I21BCOS(P) + - V2BSin(p) (4.24)
zo

v2 = V2 cCos(p) + jZI 2 3 cSin(p) (4.25)

123 = I2 3 cCOS(p) + - V 2cSin(p) (4.26)

V3  V3cCos(p) + jZoI32CSin(p) (4.27)

132 = I32cCos(P) + V3cSin(p) (4.28)

zo

Kirchhoff's Current Law (at base of each antenna):

I + I2 + 113 T (4.29)

12 + 121 + 123 = 0 (4.30) %.

13 + 131 + 132 = 0 (4.31)

PI Network equations:

(vA-v3A) (3A
I13A = VIA(jXcI3) + 1 (4.32)JXL1I3

•(V 3A-V A 4.4

1 31A V3A(jXC31) + ( (4.33)Jx L13

U,
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I 12B = VlB(jXCI2) + (v1B-V2B (4.34)
jXL12

121B = V2B(jXc21 + (V2BVlB) (4.35)
jXl2

I23C = V2c(jXc23) + (V2C-V3C) (4.36)
jXL23

132C = V3 c(jXc3 2) + (V3c-V 2C) (4.37)
jXL2 3

In order to simplify the implementation of these

equations into FORTRAN code, the transcendental components

of the transmission line equations are (from this point

on) represented in the following form:

2TFL 27TL 27TL
K- = Cos K2 = ZSin K3 = Sin -

The variables in this sel- of 24 complex equations

are labeled on the equilateral phased array diagram in

Figure 5. The variables V1 , V21 V3 are the voltage at the

base of each of the three elements of the array. I, 121

13 are defined as the current distributions (current
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flowing through each element). The variables VIAl V3A,

VIB, V2B, V2 C, V3C are the voltages at the ends of the

transmission line sections that are not connected to the

base of the antenna, but to the PI networks. The 1.2,

121 111 111 231132variables are the currents flowing

from the array elements through each section of

transmission line towards the PI networks. The currents

flowing at the end of the transmission line sections

connected to the PI networks are the variables I13A , 
1 31A'

I12B , 121B , 
1 23C , 

1 32C- The last variable of this set of

equations is IT' which is defined as the input current

from the source of power for the array and is input at

element #1 of the array.

In the "analysis" of the equilateral array the

reactive components of the PI networks are given as known

values in the set of equations describing the system. The

currents flowing in the elements of the array become the

unknown variables to be calculated. Upon close

examination of this linear set of equations the

possibility of substituting one of the groups of equations

into one of the other groups of equations is realized.

Substitution of the mutual impedance and PI network

equations into the transmission line equations was

performed to bring about a reduction in the number of

equations as well as in the complexity of the set of

equations needing to be solved. Upon completion of the
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above mentioned simplification measures for the "analysis"

situation, the 24 complex equations (4.14 thru 4.37) take

the following complex linear form:

ii + 112 + 13 = IT (4.38)

12 + 121 + 123 = 0 (4.39)

13 + 131 + 132 = 0 (4.40)

IIZII+I2ZI2+I3Zl3_VlA KI-2X13+ -  + V3A 0 (4.41)
XL13 V XL13

JK1 jKI
I13-V1A KljXC1 3  + jK3 - V3A = 0 (4.42)

XL13 XL13

IlZ3 ++12 Z3 2 +I 3 Z3 3 VlA - V3A [K+ K -K 2 Xc 3 ]=0 (4.43)
XL13 XL1 3  i &

jKI J
131 - VIA V 3 A JXc32 -+jK 3]= 0 (4.44)XL 13 XLI3 J

IlZII+I 2 Zl 2 +I 3 ZI 3 _VIB[Ki-K 2Xc K2+ V - = 0 (4.45)2 2 X I2- V2B

XLI 212

JK 1 JK N

IK jK1
I13-V1B K l jx c l 2  + jK - V2B = 0 (4.46)XL12 XL12 p

-K2  K2  ]
IIZ 2 1+I 2 Z 2 2 +I 3 Z2 2 -VIB K2 V + - 0 (4.47)

IB72B~ 1C2L1
XL12 L X- J
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1 31 ~ -l V2 FK.1 XC21 - jK3]= 0 (4.48)
31 L13 BL C XL12j

K 2-K
2  =0(.9

IlZ 2l+I2Z22+I3Z23 ..V2CKVK2X2 - + V3 C - =0(4)
XL23 XL23

'l3.V2C[KljXC23 -3 - = V3 (.0

XL23 ]XL23

IIZl+2Z2+3Z3-2C-K 2  r C[ K2  -KXl3]= (4.51)

XL23  3L XL23 2Cj

131 - V2 C~ -~ - [Kj 32 jl +jK] =0 (4.52)
XL23 C lCXL23 3

Therefore in the analysis case the unknown variables are

V112, 121 1131 131, 123, 132, VIA, V3A, ViB, V2B, V2C'
V3C, 11, 12, 13

and the known variables are

XL12, XLl3, XL23

The above set of linear (since the network

parameters are given) equations can be solved using matrix

techniques for solving a set of linear simultaneous

equations of the form Ax=b. Here A is a 15x15 complex

matrix consisting of the coefficients of the unknown
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variables, and the complex matrix b consists of the only

constant in the system (the array input current IT). The

PI network parameters are known but they are coefficents

of the variable voltages at the ends of the transmission

line sections connected to the PI networks (V1A, ..., V3C)

in the 15 linear equations (4.38 thru 3.52).

A FORTRAN subroutine was written which solves

equations 4.38 thru 4.52 using a linear equation solver

routine (LEQ2C) located in the IMSL subroutine library

available on the VAX 11/780. This analysis subroutine

ANALDESG returns to the user the complex current

distributions of the array elements after being supplied

the array's input current (IT) and the complex PI network

parameters. The source code for this subroutine CURR and

the main program ANAL DESG are listed Appendix B. a

D. Results

An example run of this subroutine is shown below;

it was supplied with constant magnitudes for all the PI

network parameters and a value for the input current IT.

XL13= 1 XC13 -50 XC31 -560

XL12 = 10 XC12 -0.01 XC21 -50 U,

x xc1 xc2
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XL23 = 100 XC23 = -25 XC32 -

IT (input current) = 1.0 + jO

Resulting Magnitude and Phase

MII = 1.0 M12 = 0.28 M1 3 = 0.28

PH 1 = 0.0 PH 1 2 = 95.6 PH1 3 = 95.58

The values for the PI network paramters in the

above example were choosen arbitrarily and thus do not

necessarily result in current distributions that

correspond to an useful radiation pattern. The radiation

pattern corresponding to the current distributions found

above (Ii,I2, & 13) is shown in Figure 23.

Below is a list of two more examples showing the

given PI network parameters and the resulting current

distributions.

XL13 = 100 XC1 3 = -50 XC31 = -500

XL12 = 100 XC12 = -5.67 XC21 = -50

XL23 = 00 XC23 = -40 X -500
L2C33

IT (input current) = 1.0 + jO

S.'-
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Resulting Magnitude and Phase

II = 1.0 M1 2 = 0.28 M1 3 = 0.28

PHI1 = 0.0 PH 1 2 = 95.48 PH 1 3 = 95.48

XL13 = 10 XC13 = -5 XC3l = -50

xL1 2 = 15 xc 2 = -0.01 XC21 = -10

XL23 XC23 = -002 XC32 =

IT (input current) = 100.0 + j45

Resulting Magnitude and Phase

MII = 1.0 M = 0.11 M1 3 = 0.28

PHI1 = 0.0 PH1 2 = 80.67 PH1 3 = 85.72

E. Summary

This chapter has demonstrated that the phased

array antenna system represented in Figure 5 can be r

analyzed by solving the 15 linear simultaneous equations

% %
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that describe the system. The current distribution for

each element of the array are the three variables of most

concern resulting from the solution to equations 4.38 to

4.52. However, these resulting current distributions are

as arbitrary (useless) as the corresponding PI network

parameters specified by the user.

Therefore, in order to design a phased array

antenna system based on the interconnection medium ,

illustrated in Figure 5, the 24 complex equations that

describe the physical and electrical characteristic of the

system must be solved using specified (desired) current

distribution. These current distributions will correspond

to a desired radiation pattern. This idea is explored in

Chapter Five.

Presentation and analysis of the equations

describing the physical and electrical characteristics of

the three element equilateral triangular array was the

main theme of Chapter Four. The substitutions of the

,,.-
mutual impedance and PI network equations into the

I
transmission line equations was accomplished and the

resulting set of 15 equations was presented in their

complex linear form, with the known and unknown variables

clearly indicated. All of the necessary equations and

theories has been discussed and the stage is now set for

developement and discussion of the PI network design

procedures to be presented in Chapters Five and Seven.

A.



V. INTERCONNECTION NETWORK DESIGN

BY LINEARIZATION: AN EXTENSION

OF NEWTON'S METHOD

This chapter will present a detailed explanation

of a procedure capable of solving the equations that

describe the unique phased array antenna system of Figure

5 in the "design" situation. As mentioned in the

introduction, the design process pertains to the situlation

where the currents on the radiating elements are

classified as given (known constant complex quantities),

while the PI network parameters are the unknown variables

of interest. Therefore, the "design" of interconnection

networks for the array is just the opposite, where the

variables of interest are concerned, of the "analysis" of

interconnection networks that was presented at the end of

Chapter Four.

To a potential user of the equilateral array

proposed in this thesis, the "design" situation would be

of most interest. The user probably already has

calculated the current distributions on the elements of

the particular array (discussed in Chapter Two) and wouli

need only the proper PI network parameters to realize the

desired radiation pattern. The design procedure of this

chapter provides these PI network parameters given the

current distributions on the elements as input. a

78
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The discussion will begin with an explanation of

the substitutions made among the 24 equations describing

the array (equations 4.14 thru 4.37), justification for

giving some variables a constant value, and why one of the

Kirchhoff's Current Law equations was disregarded (not

used) as an equation describing the array in this design

procedure. The nonlinear equations are presented in their

complex form and a detailed discussion of the

linearization process performed on these equations

follows. The linearized set of complex design equations

and the results of an implementation of this design method

on the equilateral triangular array, with XCI2 and XC2 3

being the unknown variables, is shown as an example. _

In this design method the parameters of the PI ',

networks are unknown values. The desired current for each

element in the array will be input as known values from

the program MAXRAD (discussed in Chapter Two and listed %P,

in Appendix A). Reducing the amount of equations and the

number of unknown variables by substitution of the mutual

impedance and PI network equations into the transmission

line equations was done in order to simplify the

computational procedure.

Substituting the mutual impedance equations into

the tansmission line equations for the variables VI, V2 ,

and V3 and the PI network equations for the variables

I13A' I31A' I12B1 1 21B , I23C' and 132C yields a set of 12

r V
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equations. Together with Kirchhoff's Current Law (KCL)

equations, the number of equations now describing the

system has been dropped to 15. The voltage at the base of

each antenna (VI , V2, V3 ) are constants for this method

since the input currents Ii, 12, and 13 are given and the

self and mutual impedance values ZlI, Z1 2 , and Z13 are

also known values. Thus, equations (4.7-4.9) give VI, V2,

and V3 directly. In order to solve these 15 equations

(4.38 thru 4.52) simultaneously there must be the same

number of equations as there are unknowns. The current

flowing into the array from the transmitter (IT) is an

unknown variable that must be disregarded in this design

procedure. So equation 4.38, which is the KCL equation at

the base of antenna #1, is taken out of the system in

order to balance the number of equations with the number

of unknown variables. Thus, equation 4.38 is assumed

non-existent and is not included in the set of 14

nonlinear design equations describing the array. There

remains 14 equations with 21 unknown variables.

In order to make the 14 equations solvable, seven

of the nine PI network parameters were assigned specified

values and so they become knowns, yielding 14 nonlinear

complex equations in 14 unknowns. The PI network

parameters that were not given a value become the unknown

variables of interest. For the example shown in this

chapter XC1 2 and XC23 are the unknown network paramaters.

snI
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A. Design Equations

The 14 nonlinear complex equations have been

arranged in a form that is compatible with the linear

equation solver routine (LEQ2C) of the IMSL subroutine

library. The design equations are listed below in this

form:

121 + 123 = -12 (5.1)

131 + 132 = 3(5.2)

K -
VlA1l K2XC13 + v3A - =v (5.3)

XL13

j K1  jKl 4.

II3-VlA[KljXC1 3 - jK - VaA =0 (5.4)
XL13 J XLl3

-K 2K2
VIA 2 + V3A 1 + - -K2Xc3 = V3  (5.5)

XL13 XL13 I

[K jKl 56
I31_VlA - V3A KIjXc3 1 - +jK 3 = 0 (5.6)

XL13  XL13 J

K2  -K 2
V - K2XCI 2 + + V2B - = V1  (5.7)

XL12 XL12

F jK1  jK1
I2-VIBI KljXCl 2  -- + jK 3 - V2B =0 (5.8)

L XL12  L12

A
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VIB -K- + V2B LK + - - K2Xc21J= V2  (5.9)
XL12 XL12 1

I21-VIB 2jK1  V2B IJXc21 - +jK 3 = 0 (5.10)

XL 2  XL12

V2C 1 - 2xc23 - V3C - = V2  (5.11)

V2CXL23 XL23c3

[KJK 3 jKI-
I23-V2C IKjXc 2 3  L3 - XL2 j C (5.12)

-K2  CK K2
2c + V3 1 + - K2Xc32] V3  (5.13)

XL23 XL23

JK2 JKI +jK = 0 (5.14)
I32-V 2 c XL 2 3  XL23

Since the unknown PI network parameter are XC12  and XC23
the unknown variables of the design equations listed above

are:

I12, 121, 123, 132, 113, 131, V1A, V3A, VIB, V2B ,

V 2 c, V 3 C, XC1 2 1 XC23

and the known variables are

V1 , V 21 V 3 , Ill 12, 131 Zil, Z1 2, Z 13 , Z 2 1, Z 2 2 ,

+ + - .V ' S.iu. i l iii l il l i i i -" .5* . . .% . Y. " +" " -S~% V" " * S
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Z2 3, Z3 1, Z32, Z3 3, XL12, XC21, XLI3, XC1 3 , XC31
X L23, XC32 

:

The K1 , K2, and K3 terms are defined as they were

in Chapter Four on page6l.

Upon observation of the 14 design equations one

can see the nonlinearity is due to the occurrence of

crossproducts between the unknown phasor voltages and the

unknown PI network parameters. For instance, since XC12

is an unknown network parameter that needs to be found, an

example of a nonlinear component is the VIBXC12 term in

equations 5.7 and 5.8. Also the component VIAXcl3 is

nonlinear in equations 5.4 and 5.5 if the XC1 3 network

parameter was an unknown capacitor of interest.

B. Taylor's Series Expansion

In order to solve the 14 design equations exactly,

one must use a linear equation solver routine which

utilizes matrix algebra techniques (Ax=b). Therefore the

nonlinear equations must be lrxearized. The method used

to do this is a generalization of Newton's method for
27.

finding the roots of f(x)=O.2 7  The generalization

involves extension to the multivariable, complex variable

case presented by the solution of equations 5.4 thru 5.15.

- 4 "1-11 11
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The extension is as follows.

Transposing all terms of equations 5.4 thru 5.15

to the left of the equal sign, the design relations may be

written as

fi(xl xn) = 0 i=l, ... ,n (5.16)

where fi(xl,...Ixn) is the complex left hand side of the

ith equation and 0 denotes the complex number 0 + jO.

x = (xl,...,xn) denotes the complex (Real + jReal) problem

unknowns, whether voltages, currents, or parameter values.

Expanding fi in a complex n-dimensional Taylor's series

about an initial (complex) guess and retaining linear.L

terms, one gets

n
fi(xl,...,xn)=fi(xlo,...,xno) + dfi (xj - Xjo) (5.17)

J~ dx bo JI

Ixjo

Equating the right side of equation 5.17 to O+jO (complex)

yields

n
f i+o,...,Xno) + (xj - xjo) = 0 (5.18)

or

Zsr L

2 10p.
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n

f.(x101... ,xno)+ 2 (x)

n
Y- f iJI (Xjo) = 0 (5.19)

j=l 'xj =o

leading to a set of n simultaneous complex linear

equations

n n 1,

Yj fir (Xj)= fi (Xjo)_fi(xlo,...,xno) i=l,...n (5.20)
j"(x j xo  j=l rjxj x

Equation (5.20) maybe expressed in complex vector/matrix "

form as

C(x = d(xo) (5.21)
0

where C(xO ) is an nxn matrix of complex coefficents

dependent upon x=(XlO..., xn°) as the point of

linearization, where

Cij(x) = fi i,j=,...,n (5.22)

j= C/Xj o

and d(Xo) is a complex n-vector whose elements are also

dependent on 2o:
0.0

.,!
p-
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.-

di = I i (Xjo) -fi(Xlo ... , Xno) i=..,n (5.23)

From an initial complex vector guess x.

.(xlo,...,xno) at the root of 5.16 may be solved via

complex matrix inversion with

x = (X( )...,X)c1 ( d(_x) (5.24)

representing the approximate vector "root" of the original

set of design equations 5.16.

Utilizing the approximate "root" as a new .4

linearization point for the Taylor's series expansion, an

iterative process determining a sequence of approximations ,

to the solution of 5.16 is obtained:

k+l = [C(xk) ]- I  d(k) (5.25)

where the elements of C(x) and d(x) are as given above.

".ssentially, the algorithm is a vector/matricized

generalization of Newton's method to the

multi(complex)variable case.

Any of the 14 design equations containing the two

unknown PI network parameters must be linearized using the

- -- -. , • -i , il i- .- * . . .... i - . . . i ... i I
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procedure discussed in the previous paragraphs.

The abstract explanation of the linearization

given above is complemented by a listing of the

linearization steps performed on the nonlinear equation

(5.7).

F = VlB(Kl + K2/XL12) - VlBXCI 2 K2 - V2B(K2/XL12)

The Taylor Series Expansion begins with the step below.

Fo +- (VB-VB o ) + (Xc12-Xc12o) + (V2B-V2Bo)
dVlB QXC12 dV2B

or

F + A + B + C = V1 ,5

after the partial derivatives are performed Fo , A, B, and

C become

A = (K1 + K2/Xc1 -- K2Xc12o)(VlB - VlBo)

B = (-VlBoK2)(XC.2 - XC1 2 o
)

C = (-K2/XL12)(V:B - V2Bo)

Fo=VlBo(Kl + K2 /XLl2 ) - VlBoXC12oK2 - V2Bo(K2/X.12)

Adding all the terms toge:her (with a substantial number

of them cancelling each other out) the remaining terms

take the following form

%5
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vl1BLK, - K2Xci2 + + V2B
XL121 XL12

+ x C12(-VlB K2)= - XC12oVlBoK2

Upon completion of the linearization process on the 4

nonlinear equations, the 14 design equations take on the

following form:

v 1(K-K*X13K2XL3)+ V3A(-K2/XL13) I- V1  (5.27)

I1-l(lX1-K/L1+K)VAjX1 = 0 (5.28)

v 1A(-K2/XLl3) + V3A(Kl+K2/XLl3-K2*XC3l) = V3  (5.29)

I31-VIA( jKl/XLl3)-V3A(Kl jXC 3 1 jKl /XLl3 +jK 3) = 0 (5.30)

V1B[K1 - K2 XCi2 '+ L2 + V2B L1

+ XC12(-VlBoK2) =V 1 - XC12 oVlBoK2 (531

112 -VlB[KljXC1 2 o - K 2 jK3J V2B jK1
XL12 jXL12

+ X12(j~VlBo) = jVlBoXCl2 oKl 5.2

V 1B(-K 2 /XL12 ) + V2B(K1+K2/XL12 K2*XC2l) =V 2  (5.33)

121 - Vl~K =X1)VB"jC1 ~ X1+j3 0 (5.34)
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K 2  -K 2
V2 C[KI-K 2 *Xc2 3 + + V3C L

23] XL23

+ XC23(-V2COK2) = V2 <C2 3oV2CoK2 (5.35)

F jK1  jK1123 K--3 + jK  - V3C X2
I XL23 XL23

+ XC 23 (-jKIV2 Co) = -jV 2CoXc2 3 o (5.36)

V2C(-K 2 /XL 23 ) + V3C(Kl+K2/XL23K2*Xc32) = V3  (5.37)

132 - V2C(jKI/XL23) - V 3 c(KljXc3 2 jKI/XL2 3 +jK3) = 0 (5.38)

The coefficents of these 14 design equations are

calculated using the known values, and these coefficents

make up the matrix A in the formula x = A-lb. Any

resulting constants are put into the b matrix.

C. Results

The design equations have been incorporated into a

program named DESIGN which calculates the values for the

X,. 2 and XC23 PI network design parameters. The program

has been run with a range of input currents calculated

using the beam steering method of Chapter Three and is

listed in Appendix C. The input current distribution

W. . ,0 41
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corresponding to a set of Gm and 0 n (max and null)

directions were calulated using the programs discussed in

Chapter Two and stored in a data file. The design program

is able to read in these currents and calulate the

corresponding XC1 2 and XC 2 3 values.

Figure 24 shows the radiation patten of the

equilateral array when 0 m = 0 and Gn = 90. The current

distributions corresponding to this pattern is used as

input into this example of the linearization design

method. The initial guesses for the variables V2 Co, VIBo,

XCI2o, and XC23o were

V2Co = 1.0 + jl.0 VIBo = 1.0 + jl.0

C23o 1.0 + jl.0 C2o =1.0 + jl.0

The magnitude and phase of the currents flowing

in each element of the array, the seven constant PI

network parameters input by the user, and the resulting

two designed parameters XC1 2 and XC23 are given below:

Magnitude and Phase of Desired Current Distributions

M = 1.0000 PHi1  000.0000

M = -0.5600 PH1 2 = 120.0000

M13 0.45 PHI3 = 023.000 I
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Given PI Network Parameters

XL13 = 10.0 XC13 = -1.0 XC31 -5.0

XL12  10.0 XC 2 1 = -1.0 Xcl 2 = Unknown

XL23 10.0 XC32= -5.0 XC23 = Unknown

'p.&

Unknown Parameters for Ten Iterations I

I = 1 XC12 = (3456.3+j234.6) XC23 = (00234.3-j485.2)

I = 2 XC1= (0008.6-j005.1) XC23= (-O.0001+j.i098)

I = 3 XC12= (-.0018+jO.114) XC23 = (-0.0001-9.1099)

I = 4 XC12 = (0.0-9.1103) XC23 = (-0.0001-j91099)

I = 5 XC12 = (0.0-j.1103) XC23 = (-0.0001-j.1099)

I = 6 XC1= (0.0-j.1103) XC 2 3 = (-0.0001-j.1099)

I = 7 XC 2 = (0.0-j.1103) XC23 = (-0.0001-j.1099)

I = 8 XC12 = (0.0-j.1103) XC23 = (-0.0001-j.1099)

The design program was run on a wide range of

current distributions. The following results are the

designed XC1 2 and XC23 and corresponding Q's for em and 0 n

values ranging from Gm = 0 to 360 in steps of 90 depress

and Gn = 0 to 360 in steps of 45 degrees. Several of

these runs are showns below with specificEm and 9n

values, corresponding current magnitudes and phases, the

designed PI network parameters and corresponding Q values.

y'%
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em = 0.0 en = 45.0

m = 1.00 PH1 1 = 21.0

12= 4.24 PH 1 2 = 11.0

M 1 -4.57 PH 1 3 = 22.0

XCI3 = (3.50E-7 + jO.1103) QC13 = 314658.1

XC23 = (9.64E-7 + jO.1105) QC23 = 1141.9

em = 0.0 n = 225.0

m = 1.00 PHi1 = -3.0

M12 = 0.47 PH 1 2 = -23.0

M3 = -0.97 PH 1 3 = 33.0

XC1 3 - (2.15E-6 + jO.1103) QC13 = 51158.1

XC23 = (5.18E-5 + jO.1104) QC23 = 21321.9

em = 90.0 En 135.0

M = 1.00 PHI1 = 7.0

M12 = -0.71 PH 1 2 = -3.0

M13 = -0.35 PH 1 3 = 43.0

13N6LI
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XC13 = (8.77E-6 + jO.1103) QC13 = 12574.0

X = (-4.02E-4 + jO.1105) 0C23 = 275.9

From the above example it is obvious that the required

capacitative reactances are complex. Therefore the Q's of

the designed capacitors are non-infinite.

In order to check the results of this example, the

given and calculated PI network parameters are input into

the analysis program of Chapter Four. The current

distributions resulting from the analysis subroutine are

used to plot the radiation pattern. As indicated in

Figure 25 the pattern produced by the analysis run is

exactly the same of the pattern desired (Figure 24).

However, if the resistive components of XC12 and XC23 are

assumed zero, the currents produced by the analysis

subroutine no longer result in the exact same pattern (see

Figure 26). The figure shows that the null at E = 90 is

not as deep as it was previously.

D. Conclusions 'P

Surprisingly (given the complexity of the physical

situation under discussion), the method usually converges.

As seen in the above examples, if it is going to do so, it

P
* . r v*~~ .' . . . . . -P.
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converges to single precision accuracy in about four

iterations, yielding virtually instantaneous response on a

multiuser VAX 11/780.

The main objective of th'b chapter was to supply

the reader with the essential components of the extended

Newton's Method linearization design method for solving

for the parameters of the PI interconnection networks.

The 14 design equations were derived from the 24 complex

equations describing the array and their source of

nonlinearity was clearly indicated. The linearization

process, which resulted in an iterative Newton's Method

type procedure, was examined quite closely. This method

converges for a majority of the patterns it is ask to

produce.

This design procedure's biggest draw back is the

fact that it only designs two of the nine PI network

parameters. Also, if the given parameters are specified

with magnitudes larger than 10.0 the design routine will

not converge. However, the fact that this method works

for any PI network parameters is in itself an achievement.

This procedure has proven (at least in theory) that it is

possible to use the interconnection networks of this

thesis in a phased array antenna system.

S -S. .:V
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VI. A Direct Search Optimization Method:

Developement and Testing

This chapter presents a detailed examination of a

unique direct search optimization method developed by the

author. The developement of this direct search

optimization method was undertaken as a possible

alternative technique for solving the nonlinear "design".

equations of the equilateral array described in Chapter

Five. There is definite application of this method in a 'a

proposed design technique based on the constrained

optimization of the current distribution on the array's

elements by adjustment of the PI network parameters in the

"analysis" equations of Chapter Four. This design

technique will be discussed in Chapter Seven.

A brief discussion of the generalities of direct

search optimization methods begins this chapter. A

detailed explanation of the various blocks of decision

control for the direct search optimization method

developed here is presented next. The operation of each

of the separate procedures that are performed on the

variables of the objective function are clearly explained.

As an example, the various procedures of the optimization

method are discussed in reference to a two variable

quadratic equation. This chapter concludes with sample

98
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p.

optimization trials on several quadratic and

transcendental multivariable objective functions.

A. General Operation of the Hillclimber

Direct search methods ( hillclimbing methods) of

optimization base their operation on a finite number of

evaluations of trial solutions to an objective function

called the hill height. Comparision of subsequent trial

solutions is the basis for further evaluation of the

particular problem. The methods involve evaulations of

the objective function starting with a given initial point

in the particular n-dimensional space. This initial point

is some arbitrary value of the variable vector x = (x , .

X n)T containing the arguments of the function under

consideration. These optimization methods usually only

require objective function evaluation and do not use

partial derivatives (as in the steepest decent

optimization methods). Information accumulated as the

search proceeds is used by some techniques in support of

directional movements in the variables.

A two variable quadratic function of the form

2 2

f(xl,x 2 ) = (xI  - a) + (x2  - b) (6.1)

C,



100

will be used to help explain in detail the direct search

optimization method to be discussed in this chapter. This

optimization method will be referred to as the

hillclimber throughout the following discussions. x, and

* define the axis of the two dimensional xlx 2 plane. The

a and b represent the location of the minimum of the

simple quadratic function given in equation 6.1. Figure

27 shows the xlx 2 plane and the level curves of the

function represented by equation 6.1.

The hillclimber's basic operation, in relation to

equation 6.1, is the adjustment of the variables xI and x2

(starting from some initial point (Xlo,x2o ) in the plane

until the minimum of the objective function is realized.

The variables are adjusted one at a time, in alternating

sequence, with the magnitude of the objective function

being calculated and evaluated after each adjustment of a

variable (see Figure 28). The magnitude of the objective

function is defined as the hill height of the function.

For the two variable function of equation 6.1, with the

minimum defined at a=l and b=2 at an initial location

lo=5 and x2o=5, the hill height equals

2 2
HH (Hill Height) = (5-1) + (5-2)

= 25

The hillclimber adjusts the variables of a

* b

Nor, %w
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function in the following manner. The first variable of a

multivariable sequence ( x, . . . .. . .# ) is moved in a

positive direction equal in magnitude to a present step

size si. In other words, the initial given value ..lo for

the variable x, is replaced by xlo + Sl*d I where sI is the

step size and dl is the direction of the variable xl; d1

is either +1 or -1. The hillclimber has moved the

location of the variables of the two dimensional function

of equation 6.1 from (xlox2o) to the new location (xlo +

s1 *dl , x2o). The hill height of the function is

calculated, and by the comparision of the new hill height

HH1 to the previous hill height HH0 (the hill height

calculated from the initial values of the variables) the

hillclimber routine is able to make basic adjustment

decisions as to new values for x, and x2 - hopefully

closer to the new location of the minimum.

At some point in the optimization process

(sometime during the first adjustment sequence through all

of the variables of the objective function) the hill

height becomes the hill height of least magnitude to date.

The hill height of least magnitude becomes the previous

hill height upon which the basic adjustment decisions are

made. This previous hill height will be referred to as

the lowest hill height to date (HHltd).

ltd)*

I.$ - P
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B. Hillclimber's Fundamental Control Procedures

Comparision of the present and the lowest hill

heights to date logically can result In three possible

situations as a result of a change in one of the xi: the

hill height could have increased (HH1 > HHltd) , it could

have decreased (HH1 < HHltd) ' or it could have stayed the

same (HR1 = H~t). What the hillclimber does in each of

the above situations will be discussed next.

First, let us assume a new hill height has been

calculated and the magnitude is not lower than the least

hill height to date (HH1 > HHltd) - The decisions of the

hillclimber are as follows: since the value of the hill

height is now greater than it previously was (because it

moved further away from the desired value), the variable

x, shall be returned to the previous value x1 o and the

direction dl shall be changed to the direction opposite to

what it was previously. These two decisions constitute

the first fundemental block of decision control code and

are shown more clearly in the notation below:

IF (HH1 > HHltd) THEN

1. xi = xi - si*di (returned to xi )

2. di = -l*d i

When the hillheight Hi is less than the least hill

i ,S
:d
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height to date HHltd (HH, < HHltd) , the variable x, is

allowed to retain the new value (xl+sl*d I ) and current

direction while the succeeding variable x2 is immediately

adjusted to the new va'ue x2+s2*d2 - This is shown below

in notation form as

IF ( HH1 < HHltd ) THEN

i. = xi + si*di

2. x(i+1 ) = x(i+l) + s(i+l)*d(i+l)

In situations where the present hill height equals

the current least hill height (HH1 = HHltd ) the variable

x is returned to the previous value and the present

direction is maintained. The succeeding variable x2 is

immediately adjusted using the current step size and

direction. In notational form these decisions constitute

the third fundemental block of decision control code and

are

IF ( HH1 = HHltd) THEN

.x i = xi - si*di

2. x(i+l) = x(i+l)o + s(i+l)*d(i+l)

3. s i = si*10.0

C. Hill Height Not Changing- (HH 1 = HHi)

'.- SP|S~
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Another block of fundamental decision code is used

to handle situations where adjustment of the variables of

the objective function does not change the magnitude of

the hill height. In other words the hill height is not

being changed within the word length of the computer

making the calculations. This can happen when the

variables being adjusted have reached values that are too

large or too small to have any effect on the objective

function, or whenever the surface is flat. This problem

is detected by continually comparing each new hill height 9

(there will be one hill height for each iteration of the

process) with the hill height immediately previous.

An example of the operation of this block of

decision code is shown by defining (I) to be the iteration

counter of the optimization process. I=0 corresponds to

the hill height calculated from the given initial values

for the variables. In a two variable optimizaton process,

I=7 corresponds to the fourth adjustment of the first

variable xI . Therefore, HH o is compared to HH1 and for

the remaining iterations HH(iI) is compared to HH i

inorder to detect when the adjustment of the variables is

not effecting the magnitude of the hill height. If this

condition is detected the following action is initiated:

IF (HH(i_I) = HHi) THEN S

1.x i  xi - si*di (returned to xi )

I..
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2. x(i+l) 2 x(i+l) + s(i+l)*d(i+l)

3. si = si*lO-O

Now that the four fundamental blocks of variable

adjustment decisions have been discussed, the two variable

optimization process referred to in that discussion will

be continued in some what more detail.

Using these four fundamental decision blocks the

two variables of equation 6.1 will continually be moved

towards the desired values (xl=a, x2 =b), resulting in a

hill height of zero magnitude (see Figure 28). The

optimization process will continue the sequence of

alternating adjustments until one of the variables makes a

move in a direction that is further away from the location

of the minimum (HHi > HHltd). Then the hillclimber

reverses the variable's direction di as shown in the

preceeding paragraphs.

D. Periodic Pattern Detection

Figure 29 shows this happening to the x2 variable

as it moves below the minimum b to an increased hill

height (HHi > HHltd). At this point, the x2 variable will

be moved back to the value it had just prior to the step

that increased the hill height and the direction dI
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is multiplied by -1. x, will continue to be moved in the

same direction because it still can move much closer to

the minimum coordinate (a) by maintaining this direction.

The x2 variable will now step in the direction d2 and from

Figure 29 one can see that this step will also be

retracted because the hill height was not reduced below

the lowest to date (HH ltd). The x9 variable will now

begin a sustained sequence of back and forth steps on each

side of the hill height of least magnitude to date. This

back and forth sequence will consist of three x2 variable

magnitudes; the x2 magnitude corresponding to the lowest

hill height (HHltd), an x2 magnitude corresponding to a

hill height lower in magnitude than HHltd, and an x2

magnitude corresponding to a hill height greater in

magnitude than the HHltd. Detection of this periodic

sequence of steps above and below the present best

variable magnitude constitutes the most important block of

decision control within this optimization routine: the

reduction of step sizes upon detection of oscillatory

behavior in the adjustment of the variable's directions

and magnitudes.

The periodic behavior described in the above

paragraph happens because the size of the steps being

taken in the positive and negative directions are too

large. For instance, if the current best magnitude found

for x was 50, the desired or minima value (b) equals

24
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54.3, and the step size s2 was equal to 0 then the

routine would continually jump from 50 to 60, from 60 back

to 50, and then from 50 to 40 and back to 50 again. With

an s2 of magnitude 10 maintained, the routine would

forever repeat this pattern. This periodic pattern of

movements is shown in Figure 30 for both x, and x2

arguments. However, the routine is able to detect this

periodic behavior in both arguments and adjust the step

size accordingly.

For the two variable example being discussed, the

step size s2 will be decreased from its initial value of

10 to a value of 1.0 and the routine will begin to move

from the best magnitude 50 in the positive direction

toward 54.3. But, once the x2 variable reaches the

magnitude of 54, a periodic movement above and below this

new best magnitude for x2 will begin again. s2 will again

be reduced by a factor of 10 to equal 0.1. The routine

will continue movement towards the minimum and will

quickly find the desired value since the routine is taking

steps in the decimal limits of the minimum (0.1). This

periodic behavior will happen on the x, variable as it

nears the minima (a) and sI will also be decreased to the

decimal accuracy of the minimum.

The periodic pattern detection procedure uses an

array containing the previous values of the variables

choosen by the hillclimber during the progression of the

- - 5,* **~* ***~**~ ~ .Y- ~ a
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routine. The length of a periodic pattern is twice the

number of variables. If (I) is defined as the iteration

counter of the optimization process then the periodic

pattern detector compare- the 2xN (where N is the number

of arguments in f(xi)) sequential values xi(I7) thru

X i(i-4) of a variable with the next 2xN set of sequential

values xi(1 . 3 ) thru xi(I) after each iteration of the I

optimization routine. If there are two variables in the

function being optimized a periodic pattern four

iterations in length can occur. Detection is accomplished

by comparing the the present value of the variable and its

previous seven values. If x, is the variable being

observed the comparisions are as follows:

Does Xl(I_0 ) equal Xl(I 4 )

Does XI(I_1 ) equal XI(I5)

Does X1 (i 2 ) equal Xl(1 _6 )

Does XI(I 3 ) equal XI(I 7 )

If the four statements above are true then

1. si= si/10.0  (step size is reduced) 0

2. xi xlhhi (xi is set to best value)

where x equals the magnitude of the variablewheresxpohi

corresponding to the lowest hill height found to date.

I * .0
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If all four comparisons are equal, a periodic pattern has

been detected and x, is oscillating around the best value

it can find with the present si magnitude.

E. Prevention of False Pattern Detection

Because the variables are reset to the magnitude

corresponding to the lowest hill height found so far in

the process it is possible that the pattern detector

could, depending on the present magnitude or even the

minimum of the function, detect another periodic pattern

on the next adjustment of a variable x(i+l). This pattern

would be false because the routine had not been given the

chance to adjust the particular variable using the reduced

step size. Therefore a new periodic pattern could not

exist one iteration past the detection of a previous

pattern. Preventing detection until 2n+l iterations

beyond the detection of a previous pattern insures the

variable step sizes do not get reduced on every iteration.

F. Step Size Enlargement

Reduction of the step size magnitude is imperative

to finding the actual minimum of a function. On the other

ft

-. p 5'
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hand step size enlargements, while not an absolute

necessity of the optimization routine, do increase the

speed of convergence by allowing the variables to move in

larger steps towards the desired results. The step size

enlargement module depends on a user input constant Mdist,

which specifies the length of continuous movement in the

same direction. The word "length" means the number of

movements of a particular variable in the same direction.

The Mdist variable should usually be specified to be 10

steps in the same direction, but has been given other

values in test runs to see if there is any optimal length

the variables should be allowed to move in the same

direction before the step size is enlarged. For LhI-A

objective functions tested, values of Mdist anywhere

between 5 and 13 seem to perform equally well. A length

of 10 was chosen for all the example6 in this thesis

because all other step size evaluation procedures base

their movements, reductions, and comparisons on the factor

of 10. This length variable can be input to a users main

program and passed into the optimization routine for the

purpose of tuning the hillclimber to the users particular

problem.

G. Step Size Boundaries
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There are two procedures in this direct search

optimization routine which prevent the step size of the

variables from becoming too small or from becoming too

large. These procedures are refered to as the step size

maximum and minimum. The user is able to specify the step

size range for all variables and the step sizes are

prevented from going beyond or below these limits. The

step size maximum procedure checks the step sizes against

the maximum magnitude allowed and resets them to a

magnitude of ten below the limit specified by the user.

Immediately after this step size maximum procedure, the

step size minimum module checks the step size of all the

variables against the minimum allowed. If one of the

variable's step sizes is at the minimum magnitude it will

be reset to a value that is a factor ten above the limit

and the particular variable in question is reset to the

best value found (to date). The step size can be

continually increased if the variable continues to move in

one direction. This can happen if the movements of the

variable have only a very small effect on the hill height.

The step size maximum procedure prevents this from

happening.

H. Basic Procedures Reviewed

-. h. .
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There are five distinct control modules for this

optimization routine and they are as follows:

1. Direction Reversal (due to increase in hill height)

2. Step Size Reduction (due to periodic pattern detection)

3. Step Size Enlargement (to increase convergence rate)

4. Step Size Maximum Limit (to prevent divergence)

5. Step Size Minimum Limit (to prevent divergence)

This optimization routine is in the form of a

subroutine which is called by a main program. The main

program is nothing more than a medium for inputing the

initial values Xio and step sizes Sio and transferring

them to the hillclimber. The hillclimber will call a user

created subroutine containing the function to be

optimized. The hillclimber passes the current values of

the variables to the subroutine FUNC where the hill height

is computed. Appendix E contains a listing of the

hillclimber subroutine HCSUBR, the objective function

subroutine FUNC, and the main program MAINHC.

I. Results

The hillclimber was tested on several quadratic

and transcendental functions of which a two will be shown
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below. The examples will present the form of the

objective function, the initial values of the variables

and their step sizes, the step size maximum and minimum

limits, along with the HHltd and the corresponding

optimized values of the variables.

The first function tested has the form,

F(xl) = (xl2 - 78.7)2

with the hill height equal to

HH i = (x1 2 - 78.7)2

The initial values and other parameters of interest are

Xlo = 10.0 ma x = 000.0

Slo = 1.0 Smn = 0.0001

and the results after 67 iterations are s

xllhh = 8.8713 HHltd = 0.00

The table of data shown below contains the value

for the argument xI and the resulting hill height for the

first 20 iterations of the hillclimber on this first

example.

.4
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x F(xl)

1 10.0 453.69

2 11.0 1789.29

3 10.0 453.69
a'

4 9.0 5.29

5 9.0 5.29

6 8.0 216.09

7 9.0 5.29

8 10.0 453.69

9 9.0 5.29

10 8.0 216.09

11 9.0 5.29

12 10.0 453.69

13 8.9 0.26

14 8.8 1.59

15 8.9 0.26 '

16 9.0 5.29

17 8.9 0.26

18 8.8 1.59

19 8.9 0.26 .-,

20 9.0 5.29

The second function used to test this hillclimber

is of the form V
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F(xl,x2) = Ex2 2 - 20sin(0.05xl)] 2 + 0.1[x 2
2 + x1

2
]

The initial values and other parameters of interest are

X = 100. 0 x2o = 100.0 s = 1000.0
10lo 0 max 10.

So= 10.0 s2o = 10.0 Smin = 0.0001

and the results after 200 iterations are

Xlhh = 0.10 X2hh = 0.11 HHlt d - 2.3E-2

J. Conclusions

For the relatively simple functions tested, this

unique hillclimbing routine seems to work quite well.

The initial guesses can usually be varied by the user

until an optimal solution to the function or functions is

reached. The step size enlargement procedure contains a

discretionary variable Mdist. This variable can be

specified by the user if desired and therefore creates

some uncertainity in this procedure. The author used a

value of ten for this variable. The four fundamental

blocks of decision control code and the periodic pattern

detector are the most important parts of this routine and

the logic behind them is quite sound.
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Since developement of this routine was only a part

of my entire thesis, further testing and refinement of the

algorithm is in order. This routine was use in the beam

steering procedure of Chapter Two and the results were

quite satisfactory. The radiation patterns always had the

main lobe fairly close to the desired direction. The

hillclimber is also implemented in a phased array design

procedure to be discussed in Chapter Seven.

'_.1

/'1
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VII. Interconnection Network Design:

Direct Search Optimization

of Constrained Analysis Equations

In Chapter Four quantitative analysis of the 24

complex equations describing the physical and electrical

characteristics of the three element equilateral array was

performed. The analysis of the equilateral array, given

values for all of the PI network parameters, results in

the current distribution on the array. The hillclimbing

technique presented in Chapter Six was developed

specifically for application in design of interconnection

networks for the phased array system of Figure 5. In this

chapter, the hillclimber will be used to adjust the PI

network parameters until a desired current distribution is

realized.

The discussion begins with an explanation of how

the calculated and desired current distributions are
I

defined. How the hill height is defined and calculated is

discussed next. All of the procedures of this design

method have been programmed in FORTRAN. An explanation of

the structure and interaction of the various subroutines

is presented. The subroutines of this design method are

pulled together in a main program which accepts inputs and
I

provides the resulting output. The output of this design

for
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method is the best current distribution found after a

finite number of iterations of the hillclimber. Sample

runs of this design method 3howing the resulting current

distributions and PI network parameters are presented at

the end of this chapter.

The design method of this chapter uses the

hillclimber discussed in Chapter Six to adjust the

parameters of the PI networks to whatever values will

result in the desired currents flowing in the elements of

the equilateral phased array of Figure 5. The

quantitative analysis of this system of antennas has been

placed in a subroutine CURR which is called by the

hillclimber subroutine CAP6HC. The subroutine CURR returns

the complex values of the current distributions on the

elements for the PI network parameters provided by the

hillclimber.

A. Hill Height Defined

The current distributions desired by a user

(corresponding to the desired pattern) are provided as

input to this design method and are part of the hill

height. These desired currents (I., 12. and 13) are

normalized and used as the minima of the solution to the

linear equations describing the array. The desired
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current distributions of elements #2 and #3 are normalized

to the value that corresponds to a current distribution on

element #1 of amplitude 1.0 and phase 0.0 and take the

following form:

1 12 13
Iln =i1 12n 3nIiI 1  I1

The currents being calculated after each iteration

of the hillclimber (bl, b2, and b3 ) are also normalized to

values with respect to the current distribution on element h

#1 and are shown below.

blI b2 _b3

ln b2n 3n
bin b1  b, b

The PI network parameters are loaded with the

initial guess values (xio) and passed into the analysis

subroutine. After the 15 complex linear equations are

solved, the analysis subroutine CURR passes the computed

current distributions back into the main program where

they are normalized as shown above. The hill height is

defined to be the squared difference between the
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normalized desired currents (Iln , I2n, and I3n) and the

normalized calculated currents (bln, b2n, and b) and is1n, 2n, 3n

shown in equation 7.1. The hill height is calculated

after each adjustment of a PI network parameter during the

progression of the optimization routine. The real and

imaginary components of these complex current

distributions are subtracted and the difference is then

squared. The resulting squared differences between the

currents real and imaginary components are then added

together and the sum is the hill height upon which the

hillclimber will base decisions. The hill height takes

the following form:

2 2
HH = [Re(Iln)-Re(bln)] + [Re(I 2n)-Re(b2n)]

2 2
+ [Re(I 3n)-Re(b 3n)] + [Im(Iln)-Im(bln)] %

2 2
+ [Im(I2 n)-Im(b2n)] + EIm(1 3n)-m(b3n)3 (7.1)

'.

Using input statements in the main program the

variable vector xi , the iteration count I, the number of

variables in the objective function (Nvar), the variable's

intial step sizes si , and the range of the step sizes V

Smax and smin; are all input by user. With these inputs

from the main program the hillclimber is able to evaluate V
from he min pogra
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the hill height magnitude and use any periodic behavior in

the variables in order to make the decisions necessary for

adjustment of the variables.

Upon completion of the specified rumber of

iterations the hillclimber returns the best calculated

curr-ent distributions along with the values of the PI

network parameters that produce these currents. These

best calculated currents are normalized and used as inputs

to a subroutine which will plot the resulting radiation

pattern for the triangular geometry of the array. Also

the hillclimber can be conveyed variables that allow the

user to observe the pattern being produced by the best

current distributions found to date, at whatever. iteration L

count, during the hillclimbers progression. Listings of

the program used in this design procedure are given in
J.

Appendix E.

.N

,.

B. Results P.

.9

With only minor changes in the programs listed in

appendix F the PI network parameters can be adjusted in

any combination and sequence. The programs listed in

appendix F are designed for adjustment of the six

capacitive reactances while the three inductive reactances 9
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are held constant. The results to be presented in this

chapter will also include the problems of adjustment of

the three inductive reactances with the six capacitive

reactances held constant and r-djustment of all nine PI

network parameters. The specific data items to be listed

for the three design problems being presented are the

desired radiation pattern and corresponding current

distribution, the reactances of the Pi network parameters

held constant, the initial magnitude and step size of the

parameters being adjusted by the hillclimber, the best

current distribution resulting from a finite number of

iterations of the hillclimber and corresponding designed

PI network parameters, and the resulting radiation

pattern. V.
V.

The current distributions corresponding a .1 .

radiation pattern with Gm = 60 and Gn = 180 will be used

as input for the three design problems. This desired*

radiation pattern is shown in Figure 31 and can be used to

compared with the radiation patterns produced by the three I

design problems to be presented below.

The f rst example uses the hillclimber to adjust

the three inductive reactances of the three PI networks,

given constant values for the six capacitative reactances,

until the desired pattern is realized. The resulting

current distributions and corresponding designed

inductances are presented next and the radiation pattern
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is shown in Figure 32. S
I),sired Current Distribution in Magnitude and Phase

MI= 1.000 PH 1  0.00 ! 5

M = 0.8480 PHI2 = -148.05

MI3 = 0.2593 PH 1 3 = -42.15

Given Capacitive Reactances

XC13 = -100 227 pF 
:j

XC 3 1 = -200 113 pF

Xc12 = -300 75 pF 
k?

C12

xC 2 1 = -400 5 pF
XC23 = -o500 pH

x C3 2 = -600 38 pF
,5

Initial Values and Step Sizes

XL 3 = = 100.0 Slo = 10.0

XL12 = X 3  = 134.0 S3o = 10.0 P

XL23 X5O = 23.0 S5O = 1.0 ",

Hillclimber Parameters P
:5:

- '; ;-;'3 ; ', ..'. '. %W'.t T ""." " " ,.."v ,. ..-. .". ' "f ."- . .. . .5
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1= 300 S = 10000.0 Smi = 0.00001

Initial Value of Hill Height

HH1 = 2.331952

Calculated Currrent Distribution

Mbln = 1.0000 PHbln = 0.000

Mb2n = 1.1239 PHb2n = -164.7

Mb3n = 0.2011 PHb3n = 23.08

Resulting Inductive Reactances and Inductance at 7 MHz

XL13 = 291925 6.64 mH

XL12 = -85.375 266 pF

XL2 3 = 1650515 37.5 mH

The second design problem involves adjustment of

the six capacitative reactances, while the inductances are

held constant. After 500 iterations of the hillclimber

the resulting radiation pattern is plotted and is shown in

Figure 33. The following list of data is in the same

format as the first design problem.

.........
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Desired Current Distribution in Magnitude and Phase

MII = 1.000 PHI= 0.00

M12 = 0.8480 PH 1 2 = -148.05

M = 0.2593 PHI3 = -42.15

Given Inductive Reactances

XL13 = 100 2.27 uH

XL12 = 5 0.1136 uH

XL 2 3 = 20 0.4547 uH

Initial Values and Step Sizes

XC13 = Xlo = 12.0 Slo = 10.0

XC31 = X2o = 34.0 S2o = 10.0

XC12 =X3o = 50.0 $3o = 10.0

XC21 =X4o = 9.0 $4o = 1.0

XC23 = X5o = 78.0 S5o = 10.0

XC 3 2 = X6o = 134.0 S6o = 10.0

Hillclimber Parameters
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I = 600 Smax = 10000.0 Smin = 0.000001

Initial Value of Hill Height

HH 1 = 2.294484

Calculated Currrent Distribution

Mbln = 1.0000 PHbln = 0.000

Mb2n = 0.9172 PHb2n = -143.9

Mb3n= 0.1226 PHb3n = -58.9

Resulting Capacitive Reactances and Capacitance at 7 MHz

XC13 = 154022 0.147 pF

XC 3 1 = 0.2181 104 nF

XC12 = 9.59E-2 237 nF

XC 2 1 = 1.49E-2 1.52 uF

XC2 3 = 4.5428 5.00 nF

XC3 2 = 0.1136 200 nF

C32.

The final designed problem to be presented uses

the hillclimber to adjust all nine variables of the PI

networks until the best approximation of the desired

q
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radiation pattern is realized. The resulting radiation

pattern is shown in Figure 34.

Desired Current Distribution in Magnitude and Phase

MII = 1.000 PHi1 = 0.00

M1 2 = 0.8480 PH1 2 = -148.05

M13 = 0.2593 PH13 = -42.15

There are no Given Reactances

Initial Values and Step Sizes

XC13 = X = 23.0 Slo = 10.0

XC31 = X2o 34.0 $2o = 10.0

X C12 = X3o 13.0 $3o = 10.0

XC21 = X4o= 45.0 $4o = 10.0

XC23  = X5o 56.0 S50 = 10.0

XC32 = X6o= 78.0 S6o = 10.0

XL13 X7o = 7.0 S7o = 1.0

XL2 = X8o= 132.0 = 10.0

XL23 = X9= 58.0 $9o = 1.0

Hillclimber Parameters
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I = 900 S = 0000.0 Smi n = 0.000001

Initial Value of Hill Height

HH 1 = 2.295662

Calculated Currrent Distribution

Mbln = 1.0000 PHbln = 0.000

Mb2n = 0.8582 PHb2n = -148.6

Mb3n = 0.2918 PHb3n = -4.127

Resulting Capacitive Reactances and Capacitance at 7 MHz

XC13 = -2.36E-2 536 pH

XC31 = 0.18658 121 pH

XC12 = -2.93E-3 666 pH

XC21 = 0.54461 41.7 nF

XC 2 3 = 2.47199 9.19 nF

XC3 2 = 611.242 37.2 pF

XL13 = -32.495 699 pF

XL12 = 6.09429 138 nH

XL 2 3 = 698.966 15.9 uH
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Upon comparing the desired radiations pattern

(Figure 31) with the calculated radiation patterns

(Figures 32,33, and 34) one can see that for this

particular set of current distributions a fairly good

pattern was generated from all three types of problems.

The adjustment of the three inductive reactances resulted

in a radiation pattern with a null direction that is about

5 degrees away form the desired direction. The main lobe

direction is quite close to the desired direction and the

large beamwidth of the main lobe is quite evident. I

The problem which holds the inductive reactances

constant while adjusting the capacitative reactances

performed better than the first problem. The null

direction was within 0.5 degrees of the desired directions

and the main lobe was clearly in the 60 degree direction.

The final problem's (adjustment of all nine PI network

parameters) results were nearly as good as the second

problems results (Figure 33) except that the null depth

was not as deep (see Figure 34).

C. Conclusions

The design problems above were all examined using p

other input current distributions corresponding to other
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radiation p-tterns. The results were generally very good.

Excellent approximation to the desired pattern was

obsevered in about 50% of the patterns desired, rough

approximation was realized in about 30%, and about 20% of

the patterns desired were not able to be realized at all.

The complexity of these. designed problems, the use of the

unique optimization routine of Chapter Six, and the small

real components resulting from the design method of

Chapter Five leads one to believe that finding the desired

current distribution using purely reactive interconnection

networks is indeed a difficult problem.

I.U~\V~* v..~ *',~~U.'W.%/ ~ ~v\U~. -'-W V U ~ ~ VV -. L
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VIII. CONCLUSIONS AND RECOMMENDATIONS

The beam steering procedure presented in Chapter

Two worked quite well on all the radiation patt 'ns the

author desired. The program MAXRAD listed in Appendix A

was run inside two Do Loops with one loop incrementing the

em direction and the other incrementing the En direction.
Since the null direction is realized by solving a set of

linear equations for the current amplitudes it will always

be in the direction desired. However, additional nulls

can be produced in unspecified directions. n the other

hand, the current phases provide a means of controlling

the direction of maximum radiation.

The hillclimber of Chapter Six performed a

maximization procedure on the current phases of the three

elements in the antenna system of Figure 5. Since there

was just three elements in the array the potential degree

of maximization was minimal because the null is already

defined and the remaining radiation always had a very

broad beamwidth and was usually already fairly close to

the desired direction.

This beam steering procedure can be modified in

order to handle as many elements as desired. This

procedure provided the author with the current

distributions needed for designing the interconnection

medium of this thesis.
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The analysis of the phased array antenna system

proposed in this thesis was demonstrated in Chapter Four.

The reader was provided with the electrical and physical

characteristic to be used by the author in his

investigations. As was shown in the results, after

assuming some reasonable constant values for the PI

network parameter and solving the linear complex equations

describing the system, the resulting current distributions

on the array elements are of no use to a potential user

(see Figure 24). However, the idea of adjusting the PI

network parameters until a useful current distribution is

realized makes the analysis equations of Chapter Four the

basis for the design technique of Chapter Seven.

In the design of the phased array antenna system

of Figure 5 one assumes the desired current distributions

is known through some form of beam steering technique as

demonstrated in Chapter Two. Therefore, the values of the

PI network parameters are the unknown variables desired by

the designer of the system. Chapter Five discusses the

nonlinearity of the systems' equations in this situation

and demonstrated a linearization procedure and technique

for solving these linearized complex equations (see

equations 5.27-5.40). The resulting PI network parameters

from this technique are not very practical. The designed
I;%

parameters contain very small real components and the

reactive components are also quite small. The capacitors
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that would correspond to the ohm values of these .

reactances are very large at 7-Mhz.

Another draw back to the design technique is the

fact that one must chose seven of the nine PI network

parameters. This situation immensely limits this

techniques fexibility. Another problem with this

technique is that the seven PI network parameters that

must be specified by the user can be no greater in 1

magnitude than 10 ohms reactive. Any time this technique

is tried with parameters larger than 10 ohms in value, it

diverges ( no solution is obtained).

However, of all the radiation patterns this

technique was run with, using parameters of 10 ohms or

less, a 90% convergence rate was achieved in less than 5 N

iterations of the iterative matrix solver subroutine

DESIGN listed in Appendix C.

Chapter Six was completely devoted to the

development and demonstration of a direct search

optimization routine developed by the author for

application in a design technique discussed in Chapter

Seven. The hillclimber subroutine HCSJBR in Appendix D N

was developed to the point where it now functions as a

n-variable optimization routine requiring user input of

the initial guess and step size for each variable along

with the range of the variables step sizes and the number

of iterations desired. Also a user must create a N
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subroutine containing the functions, inequalities, or

system to be optimized. An example of this subroutine's

form is shown in Appendix D under the name FUNC.

Tt is the author's opinion that this hillclimber

performs very well, and with some refinement and continued

study, could become even more competitive with some of the

more traditional direct search optimization routines (

Simplex and Rosenbrock). This routine has been used on

quadratic and transcendental functions of several

variables as well as in the beam steering procedure of

Chapter Two and the design technique of Chapter Seven.

From observation of the hillclimber's performance in the

design technique of Chapter Seven and on some of the more

complex nonlinear quardratic functions, the routine seems

to be dependent on a good initial guess for the magnitude N

of the variables in order to reach an acceptable solution.

Chapter Seven developed and demonstrated a

promising technique for the design of interconnection

networks for the three element phased array antenna system

around which this thesis has evolved. This technique uses

the 15 complex linear equations of Chapter Four as the

system of equations that when solved result in the current 0

distributions on the three elements for a particular set -

of PI network parameters. These current distributions -

will be optimized to some desired magnitude and phase S

using the hillclimber of Chapter Six. Basically the user

% %
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inputs an initial guess for the PI network parameters and

the hillclimber adjusts these parameters until the desired

current distributions result from the solution of the 15

analysis equations.

The first form of this design technique to be

investigated was the six variable optimization of the six

capacitive reactances of the PI network parameters. The

idea behind this problem was the practical considerations

of using adjustable capacitors in conjunction with three

constant inductors if this proposed array was ever

constucted. The results from the investigation of this

problem were mixed. Given enough iteration, a reasonable

approximation of the desired pattern was achieved for

about 50% of the radiation patterns this procedure was

tried on. The author observed that if the m and em n

directions were within 45 degrees of one another, the

hillclimber had problems trying to produce a reasonable

pattern. Also the hillclimber tended to adjust the

capacitative reactances to negative values which indicated

the system wanted an inductor at that point instead of a

capacitor. The author then put constraints on the range

of the variables to try and prevent this occurrence. But,

this caused problems for some examples in the number of

iterations needed for convergence. In other problems

these magnitude constraints even prevented some examples

that were converging before the constraints from producing

%~I. ~.V%
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usable patterns at all.

The design technique was tried on several

combinations of PI network parameters, besides the three

problems discussed in Chapter Seven, and the results were

quite similar to the results already shown. The design
problem which uses all nine PI network Parameters seems to

be of most promise from a point of flexiblitiy in the

systems choice of network configuration. Even though more

iterations of the hillclimber are needed because of the

number of variables in the problem, the added flexibility

outweighs this consideration.

The author suggests further investigation of the

design of interconnection networks for phased array

antenna system in the following areas: formulating

analysis equations for larger arrays to see how lossless

reactive networks function as the interconnection medium

on a larger scale; investigation of a more suitable

interconnection medium, possibly some form of reactive

network where the parameters can function as both inductor

and capacitor; and the method of feeding this unqiue array

must be explored in further detail because how the system

is powered is a very important consideration.

p.
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cccccccCccccccccccccCcCccccccccccccccccccccccccccccccccccccccccccccccc
C
C Program Array Pattern Plotter( (ir )
C
C Version 2.1
C
C written by: Joseph D.Downs II Date:May 1986
C
C
C This program allows a user to input (Nant) antenna elements
C at any locaion in the XY plane. The spacing between each antenna
C is also a variable that can be input by the user. The user is
C prompted for the excitation amplitude and phase for each element
C and the resulting radiain pattern is plotted using a call to the
C module PPLOT.FOR.
C

dimension amp(50),ph(50) ,x(50) ,y(50),xy(360,2) ,er(50) ,ei(50) ,Etot(360)
real k,d,p,length,Emax,db
integer nant

c open(unit-7,file='hilpat',status='new')

Emax-0.0
pi=2.0*asin(l.0)
k-2.O*pi

write(5,.i' Input length factor between elements (length)'
read(6, *) length

write(5,*)'Input # of Elements'
read(6, *)nant

do J-l,nant
write(5,*)lInput position of each element #',j
read(6,*)xCJ) ,y(J)

end do

do J=1,nant
write(5,*)'Input amplitude &Phase (deg.) of element #',j
read(6 *)amp(J) ,Ph(j)
Ph(J)=Ph(j)*Pi/180.O

end do

do 1-1,360

Theta~float (I) *pi/180 .0

do J=l,nant

if(X(J).eq.0.0)then
fphi=sign(pi/2.0,Y(J))
goto 50

end if

fphi=atan(Y(J)/X(J))
if(X(J) .lt.0.0)fphi=fphi+pi

50 D-sqrt(X(J)**2.+Y(J)**2.)*cos(fphi-Theta)
P=(D/lenyth) *K
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write(7,*)'bxl=',x(l),' bx2=',x(2),' bx3=',x(3)
write(5,*)'ampl=',amp(1),' amp2=' ,amp(2),' amp3=',amp(3)
write(5,*)'bxl=' ,x( ) ,' bx2= ,x(2) ,' bx3=' ,x(3)

ph( 1)=x( 1)*pi/180.O
ph(2 )=x( 2) *pi/180. 0
ph( 3)=x( 3)*pi/180.0

write(7,*) 'END --Convergence'
write(7,*P'oerr=',oerr,' phl=',ph(l),' ph2=',ph(2),' ph3=',ph(3)
vrite(7,*) ' I

write(7,*)' The Real & Imag currents equal'

do I=1,3
curl23( I)=amp(I) *cos(ph( I) )+cj *amp(I) *sin(ph(I))
write(7,*)' The curr #,',I,' equals',curl23(I)

end do

writeC7,*)'

c call patt3(amp,ph,kl,pi,length)

CLOSE(7
STOP ,

xi;ND

% %,

% % %.



152

cCcCCCCCCCCCCCCCCCCCCccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc
C
C
C PROGRAM MAXRAD
C
C THIS MAIN PROGRAM CALLS THE HILCLIMBER SUBROUTINE TO
C TO ADJUST THE ELECTRICAL PHASE OF THE ELEMENTS OF THE THREE
C ELEMENT ARRAY IN FIGURE 1 UNTIL THE RADIATION ON THE DIRECTION
C Om IS MAXIMIZED. THE HILLCLIMBER SUBROUTINE MAX HC CALLS THE
C THE SUBROUTINE FUNCMAX WHICH IN TURN CALLS THE NULL AND FFMAG
C ROUTINES. THE NULL MODULE CALCULATES THE AMPLITUDES OF THE7
C CURRENT CORRESPONDING TO THE RADIATION PATTERN WITH THE DESIRED
C NULL DIRECTION On.
C
C
C

REAL x(3),dincrx(3),pi,THmax,THnull,acur,bampl,bamp2,bamp3
REAL amp(3),ph(3)

complex curl23(3),cj

integer time,IHOW

opentunit=7,file='max_rad,status=new')

write(5,*)'How long will iterations for this run (Int)'
read(6,*)time

C

C
cj=(O.O, 1.0)
pi=2.0*asin(1.0)

write(5,*)'Please input guesses for Phase and step'

do ir=1,3

read(6, *)x( ir) ,dincrx( ir)
write(7,*)'Initial Guess and Step',x(ir),dincrx(ir)

end do

write(5,*)'Input main lobe direction(THmax)'
read(6, *)TIJmax
write(7,*)'The main lobe direction(THmax) is ',Thmax
THmax=THmax*pi/1 80.0
write(5,*)'Input null direction (THnull)'
read(6,*)THnull
write(7,*)'The null direction (THnull) is',Thnull
THnull=THnull*pi/180.0

write(5,*)' when do you want output of iterations to begin?'
read( 6, *)IHOW

c
C
c

CALL MAXHC(THNULL,THMAX,X,AMP,TIME,DINCRX,IHOW)

write(7 ,*)'amp1= ,amp(1),' amp2=',amp(2),' amp3=',amp(3)

I%
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er(J)=amp(J)*cos(ph(J)+P)

ei (J)=amp(J)*sin(ph(j)+P)

end do

do J=2,nant
er(l)=er(l)+er(J)
ei(l)-ei(l)+ei(J)

end do

Etot(I)=Sqrt(er(l)**2.+ei(l)**2.)

if(Etot(I) .gt.Emax)Emax=Etot(I)

end do

write(5,*)' Emax=',Emax

do 1-1,360

Theta-float(I)*pi/180.0
xy(I I,1)-ETOr( I)*COS(theta)
xy(1,2)-EtTO'(I )*SItJ(theta)

end do

call plot(xy)

a. A
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCC

C
C SUBROUTINE MAXHC
C
C THIS SUBROUTINE IS THE N-VARIABLE VERSION OF THE
C THE HILL CLIMBER OPTIMIZATION ROUTINE DEVELOPED BY THE THESIS
C STUDENT. THIS IS THE MOST GENERAL PURPOSE ROUTINE AND IT
C IS USED FOR TESTING THE OPTIMIZATION PRC-.ESS ON GIVEN
C QUADRATIC, LOGRYTHMIC, AND TRANSCENDENTAL
C FUNCTIONS. IT IS USED FOR MAXIMIZATION INSTEAD OF MINIMIZATION.
C
C
C
C

SUBROUTINE MAXHC(THnull,THMAX,x,AMP,time,dincrx,ihow)

REAL OERR,ERR,what,acur,acurl0
real mlimit,mlimitl0,Merr(40000),Ediff
real arrx(lO,40000),x(l0),dx(10),dincrx(10)
real xsml(10),xlrg(10)
real bestx(l0),THnull,THMAX,AMP

integer ch,wait,wait2,nvar,nvar2,ixdir(l0),idch(l0)
integer te,td,time,mdist,ihow

C
C INITIALIZATION OF COUNTERS

ACUR0.001

MLIMIT-1000.0
NVAR-3
MDIST-10*NVAR

ch= 1
oerr-l.OE-10
I-0
K-0
J-0
L= 0
M= 0

C
C VARIABLES USED IN STEP SIZE RESTRAINT CODE
C

mlimitl0=mlimit*10.0
acurlO-acur/10.0

C
C VARIABLES OF THE ROUTINE THAT ARE BASED ON THE NUMBER
C OF VARIABLES BEING ADJUSTED BY THE PROCESS.
C

nvar2-nvar*2
wait=nvar*4
wait2=nvar*2+l

%
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C INITIALIZATION OF A COUNTERS AND DIRECTION INDICATORS THAT DESCRIBE
C THE PARTICULAR STATE OF EACH VARIABLE DURING THE OPTIMIZATION.
C

do io=l,nvar

dx(io)=l.0
ixdir(io)=l
xsml(io)=0.0
xlrg(io)-0.0
idch(io)=0

end do

c
c This begins the Hclimber by calling fuction to be optimizd
C

100 Call FuncMAX(THNULL,THMAX,err,x,nvar,AMP)

c
c This is iteration counter used in Hclimber
c

C
C THE ARRAY MERR(I) CONTAINS ALL THE VALUES OF THE HILL HEIGHT. -

C EDIFF IS THE DIFFERENCE BETWEEN THE PRESENT HILL HEIGHT AND THE
C PREVIOUS HILL HEIGHT AND CED 1FF IS THE DIFFERENCE BETWEEN THE
C PRESENT HILL HEIGHT AND THE HILL HEIGHT OF LOWEST MAGNITUDE FOUND
C TO DATE.
C

Merr(I)=err
Ediff=abs(Merr(I)-Merr(I-l))
OEdiff=abs(err-oerr)

C

c Printing option that prints out error,I, and Network prameters.
C

if(I.ge.Ihow)then
write(7,*)'
WRITE(7,15)I,err,ch,ediff

15 Format(/' I= ',15,3x,'Error= ',El6.6,3x,'ch=',I2,2x,'Ediff=',El6.6)
write(7,*)'
write(7,l7)x(l),x(2),A(3)

17 Format(' Xl= ',F16.6,3x,'x2=',FI6.6,3x,'x3= ',F16.6)
write(7,*)'

write(7,*)' Step sizes .............
write(7,*)' ,k
write(7,16)dincrx(l),dincrx(2),dincrx(3) p
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c 16 Format('il=',FlO.4,2x, 'i2=',FlO.7,2x,'i3=',FlO.7) V'1

write(7,*)'
write(7,*)' Direction .............
write(7,*)'

write(7.19)dx(1) ,dx(2) ,dx(3)
19 Format.'dl=',F4.llx,'d2=',F4.llx,'d3=',F4.l)

write(7,*)'

endif

c
c This loop loads the storage array with all values of variables through
c out the iteration sequence.
C

do ix=l,nvar

arrx( ix, I )=x(ix)

end do 0

C
c These two do loops determine determine when a variable needs to be
c reduced in size when it has gotten relatively close to an answer
c and begins jumping around it.
c

IF(I.GE.wait)then

do ia=l,nvar

C
C J,K,L,M AND MM ARE USED TO COUNT THE LENGTH OF
C A PERIODIC PATTERN.
C

j=l+l
k=l + wait2 -

m= 0 'U
mm= 0

do ib=l,nvar2

C
C THIS STATEMENT DETECTS THE PERIODIC PATTERN.

if(arrx(ia,j).eq.arrx(ia,k))m=m+l --.
j=j+l
k=k+l

end do '."'

C
C THIS STATEMENT PREVENTS PERIODIC PATTERN FROM BEING
C DETECTED ONE RIGHT AFTER ANOTHER. 4,"

C

%
.' %IC ,-. -
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if(l.le.idch(ia))goto 1

C
C IF PATTERN IS DETECTED THEN THE STEP SIZE OF THE PERIODIC VARIABLE
C IS REDUCED IN MAGNITUDE BY A FACTOR TEN AND THE MAGNITUDE OF
C THE VARIABLE IS RESET TO THE BEST VALUE FOUND SO FAR IN THE PROCESS.
C
C

if(m.eq.nvar2)then
idch(ia)=l + wait2
x( ia)=bestx( ia)
dincrx( ia)=dincrx( ia)/1O.O

c write(7,*)'***********--variable is',ia
WOc write(7,*)'Decreased increment of X,dincrx=',dincrx(ia)

c write(7, *)'X= ',X(ia)

endi f

1 end do

1=1+ 1

endif

C
c This loop keeps the step size of the variables from going out of limit.
c

do if-l,nvar

if(dincrx(if) .le.acurlO)then
dincrx( if)=acur

c write(7,*)- ---------------------------------------
c write(7,*)'dincrxl has gone to low, increased it to',dincrxl

end if

end do

c
*c This block of code determines when to increases the size (mag.) of the

c variable based on how far it has climber in one direction.
c

do ic=l,nvar

C
C THIS STATEMENT CHECKS THE VARIABLES DIRECTION INDICATOR
C AND COUNTS HOW MANY ITERTION THEY HAVE MOVED IN THE SAME
C DIRECTION.
C

if (ixdir( ic) .eq. 1) then

ele xlrg( ic)=xlrg( ic)+l '
els

xlrg~ic'=
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C
C THIS STATEMENT DOES THE SAME AS THE ABOVE FOR THE
C OPPOSITE DIRECTION.
C

if(ixdir(ic).eq.O)then
xsml(ic)=xsml(ic)+l

else
xsml(ic)=0 ,

endif .

C
C THE NEXT TWO IF-THEN'S INCREASE THE STEP SIZE OF THE
C VARIABLES IF THEY HAVW MOVED CONTINUOUSLY IN THE
C SAME DIRECTION.
C

if(xlrg(ic).eq.mdist)then
dincrx(ic)-dincrx(ic)*10.0

c Write(7,*)'############--variable is',ic

c Write(7,*)'Increased increment of X,dincrx=',dincrx(ic)

xlrg(ic)=O
endif

c

C

if(xsml(ic).eq.mdist)then
dincrx(ic)=dincrx(ic)*10.0

c write(7,*)'############ --variable is',ic
c write(7,*)'Increaesd increment of X,dincrx=',dincrx(ic)

xsml(ic)=O
endif

enddo

C
C IF THE STEP SIZE HAS GONE ABOVE THE LIMIT SPECIFIED BY THE USER
C THIS LOOP WILL REDUCE THE STEP SIZE BY A FACTOR OF TEN.
C

do if=l,nvar

if(dincrx(if).ge.mlimitlO)then

dincrx(if)=mlimit

c write(7,*)'STEP SIZE GONE ABOVE LIMIT'
c write(7,*)'

endif

end do

C

c This block takes the first initial step in a positive incrmental
c direction for X(l).
c

IF(I.EQ.1)THEN

a.,

14
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x(l)=x(l) + dx(l)*dincrx(l)
write(7,*)' I
WRITE(7,*)'Initial HH =',err
if(err.lt.oerr)then

oerr=err
endif
GOTO 100

ENDIF

C
c This block of code changes the variable back to its previous value
c if changing it caused the hill height to increase. This block also
c adjusts the variables based on the direction indicators and step size
c magnitudes by evaluating the magnitude of the hill height.
c

I

do id=l,nvar

C
C THIS OUTER IF-THEN STATEMENT PERFORMS THE VARIABLE ADJUSTMENTS
C WHEN THE ROUTINE IS OPERATING ON THE LAST VARIABLE IN THE
C FUNCTION.

if(ch.eq.nvar)then

C
C THIS IF-THEN REDUCES THE LAST VARIABLE BACK TO IT'S
C PREVIOUS VALUE IF THE PRESENT HILL HEIGHT EQUALS THE
C PREVIOUS HILL HEIGHT. IT ALSO IMMEDIATELY ADJUSTS
C THE FIRST VARIABLE TO ITS NEW POSITION. THE STEP
C SIZE OF THE LAST VARIABLE IS INCREASED BY A FACTOR
C OF TEN.
C

IF(EDIFF.eq.0.0)THEN

x(nvar)=x(nvar)-dx(nvar)*dincrx(nvar)
x(l)=x(l)+dx(l)*dincrx(l)

DINCRX(NVAR)=DINCRX(NVAR) *10.0

C WRITE(7,*)'ERR - PREVIOUS ERR LT lE-6,Bx=',x(nvar)
c WRITE(7,*)'I=',I,' id=',id,' step=',dincrx(nvar)

goto 70
ENDIF

C
C THE SAME AS ABOVE IS PERFORMED WHEN THE PRESENT
C HILL HEIGHT EQUALS THE BEST HILL HEIGHT FOUND
C TO DATE.
C

IF(OEDIFF.eq.0.O)THEN

x(nvar)=x(nvar)-dx(nvar)*dincrx(nvar)
x(1)=x(1)+dx(1)*dincrx(1)
DINCRX(NVAR)=DINCRX(NVAR)*10.0

I
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c WRITE(7,*)POerr and Err are =to e-6f

c write(7,*) EEEERRRRRRRRRRR = OOOeeerrrr'
c WRITE(7,*)'I-' ,I,' id=',id,' step=',dincrx(nvar)

goto 70

ENDI F

C
C IF THE HILL HEIGHT IS LOWER THEN THE LAST VARIABLE
C IS KEPT AT IT'S NEW MAGNITUDE AND THE FIST VARIABLE
C IS ADJUSTED.
C I

if (err. gt oerr) x(1) =x(l) +dx(1) *dincrx( 1)

C
C IF THE HILL HEIGHT IS GREATER THE LAST VARIABLE
C IS REDUCED AND FIRST VARIABLE IS ADJUSTED IMMEDIATELY.
C

iUf(err. 1t.oerr) then
x(nvar) =x(nvar)-dx(nvar) *dincrx(nvar)
x(l)-x( 1)+dx(l)*dincrx(l)

endif
goto 70
endif

C
C THE FOLLOWING IF-THEN STATEMENTS ARE FOR ALL OF THE ITERATIONS
C BESIDES ADJUSTMENT OF THE LAST VARIABLE ( IN OTHER WORDS
C MOVEMENT OF THE VARIABLES IN SEQUENCE 1,2,3 ....... N, BUT
C NOT N. MOVEMENT OF THE LAST VARIABLE (N) IS HANDLED ABOVE.
C CH TRACKS WHICH VARIABLE IS CURRENTLY BEING ADJUSTED.
C

IF(CH.EQ.ID .AND. EDIFF.eq.0.0)THEN

TE=ID+l
x( id)=x( id)-dx( id)*dincrx( id)
x(te)=x(te)+dx(te)*dincrx(te)
DINCRX( ID)=DINCRX( ID)*10.0 N

C WRITE(7,*)'ERR - PREVIOUS ERR LT 1E-6,Bx=',x(id) a
c WRITE(7,*)'I=',I,' id=',id,' step=',dincrx(nvar) a

goto 70

ENDIF

IF(CH.EQ.ID .AND. OEDIFF.eq.0.0)THEN

TE=ID+l
x( id)=x( id)-dx( id) *djncrx( id)
x(te)=x(te)+dx(te)*dincrx(te)
DINCRX( ID) =DINCRX( ID) *10.0

c WRITE(7,*)'Oerr and Err are =to e-6'
c write(7,*) 'EEEERRRRRRRRRRR = OOOeeerrrr'

W. -,.m
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c WRITE(7,*)'I=',I,' id=',id,' step=',dincrx(nvar)

goto 70
END IF

IF(ch.eq.id .and. err.gt.oerr)then
td=id+l

c if(id.eq.nvar)td-l
x(td)=x(td)+dx(td)*dincrx(td)

endif

If(ch.eq.id .and. err.lt.oerr)then S
td=id+l
x(id)=x(id)-dx(id)*dincrx(id)
x(td)=x(td)+dx(td)*dincrx(td)

endif

end do

c
c This loop changes the variables direction based on the magnitude of
C the hill height. If the variables adjustment causes the hill height
c not to be reduced below the current best hill height then the
c particular variables direction indicators are reversed so the variable
c can move in the other direction.
c

70 do ie=l,nvar

if(ch.eq.ie .and. ixdir(ie).eq.l .and. err.lt.oerr)then
ixdir(ie)=0
dx(ie)=-l.0
goto 20

endif

if(ch.eq.ie .and. ixdir(ie).eq.0 .and. err.lt.oerr)then
ixdir(ie)=l
dx(ie)=l.O
goto 20

endif

end do

c
c This block keeps track of which variable is to be changed next.
C

20 if(ch.le.nvar)then
if(ch.eq.nvar)ch=0
ch=ch+l

endif

%S
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c

c This block records value of the best variables and current values
c as the Hclimber proceeds thru the climb.
c

if(err.gt.oerr)then

write(5,*)'err=',err,' at I=',I
oerr=err

do ip=l,nvar
bestx(ip)=arrx(ip, I)

end do

endif

c
c This tells machine to do another iteration
c

IF(I.LT.time)GOTO 100

write(7,*)'
write(7,*)'HH (hill height) at end of run -',oerr

DO IH=1,3
X(IH)-BESTX(IH)

ENDDO

return
end

V

a!
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SUBROUTINE FUNC-MAX(THNULL,THMAX ,HILLH,X,NVAR,AMP)

REAL x(3 ),pi,THmax,Hil1H,THnull,Fmax,acur,amp(3) ,ph(3) .

integer nvar

complex cj,curl23(3)

cj=(O.O,l.O)
pi-2.O*asin(l.O)
k=2.O*pi

ph(l)=x(l)*pi/lBO.0
ph(2)=x(2)*pi/180.O
ph(3)=x(3)*pi/180.O

call null(pi,ph,THnull,amp)

call FFmag(pi,amp,ph,THmax,Fmax)

HillH=Fmax

RETURN

END

%.
e. f
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine null(piPH,THnull,amp)

real x(3) ,y(3 ) ,ph(3) ,amp(3) ,p(3)
real kl,THnullbcl ,c2,xll1,xl2,pi,x21 ,x22,denon

x(1 )=0.0
X(2)=0.5
X(3)=1 .0
Y( 1)=0.0
Y2) =0.8660254
Y3)-=0.0

kl= 2.0*pi/4.0

do 20 J=1,3
if(x(J).eq.0.0 .and. y(J).eq.0.0)goto 20
P(J)=kl*sqrt(x(J)**2.+y(J)**2. )*cos(atan2(y(J) ,x(J) )-THnull)

20 continue

P( 1) =0.0

C1=-cos(ph(1 )-p(l))
xl 1=cos(ph(2)+p(2))
X12=cos( ph (3) p3))

C2=-sin(ph(l1)+p(l))
X21=sin(ph(2)+p(2))
X22-sin(ph(3)+p(3))L

denom=Xll1*X22-.X21 *X12 2

if (denou. eq .0.0)then
write(5,*)' Denom equals 0.0'

goto 39
end if

amp (1)=1.0
amp(2)=(cl *X22.X1 2*c2)/denom%
amp(3)=(X1 1*c2-Cl*x21 )/denom%

39 return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine FFmag(pi ,amp,ph,THmax,Fmax)

dimension x(3) ,y(3 ) ,ph(3) ,amp(3) ,p(3) ,er(3) ,ei(3)

real kl,THmax,Fmnax,ptotal,pi

X(1 =0.0
X( 2)=0.5
X(3)=1 .0

V %%
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Y(i )=0.0
Y(2)=0.8660254
Y(3)=0.0

kl= 2.0*pi/4.0

do 30 J=1,3
if(x(J).eq.0.0 .and. y(J).eq.0.0)goto 29
P(J)=kl*sqrt(x(J)**2.+y(J)**~2.)*cos(atan2(y(J),x(J))-THmax)

29 p(l)=0.0

er(J)=amp(j)*cos(ph(J)+p(J)) 4

ei(J)=amp(J)*sin(ph(J)+p(J))

30 continue

do j=2,3

er(1 )=erI.( )+er(J)

end do

Fmax=sqrt(er~l)**2.0 +ei(1 )**2.0)

call Powerin(amp,ph,ptotal)

Fmax=Fmax/ptotal

return
end 4

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCcc

subroutine Powerln(amp,ph,ptotal)

dimension amp(3),ph(3)
complex cj,I1 ,I2, 13,V1 ,V2,V3,Zs,Z14,zl ,z2,z3 '
real ptotal,pl ,p2,p3

cj=(0.0, 1.0)
Ilamp(1)*cos(Ph(l)) + cj*amp(1)*sin(ph(l))
I2-amp(2)*cos(Ph(2)) +4 cj*amp(2)*sin(ph(2))
13=amp(3) *cos(Ph(3) ) +cj*amp(3)*sin(ph(3))

c
c

Z14=(20.4,-14.18)
Zs-(36.5,21 .0)

c
c

Vl=I1*Zs + (12+13)*Zl4
V2=I2*Zs + (I1+I3)*Z14
V3=I3*Zs +(Il+I2)*Zl4

c
c
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pi=real(conjg(I1 )*vl )
p2-real(conjg( 12)*v2)
p3=real(conjg( 13)*v3)

c write(7,*)PpV',Pl,' p2',p2,' p3-',p3
C

Ptotal-sqrt( (pl+p 2+p3)/ 36 .5 )
C
C Z1=V1/I1
C Z2-v2/r2
c Z3-V3/13
c write(7,*)'Driving point impedances equal'
c write(7,*)zl,z2,z3

c
C

return
end

% r
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C PROGRAM ANALDESG
C
C THIS PROGRAM SOLVES THE 15 LINEAR EQUATIONS DESCRIBITIG
C THE PHASED ARRAY ANTENNA SYSYTEM OF FIGURE 5. THE VALUES FOR
C THE PI NETWORK PARAMETERS AND THE INPUT CURRENT ARE PASSED
C TO THE ANALYSIS SUBROUTINE CURR WHICH RETURNS TO THIS PROGRAM
C THE CALCULATED CURRENT DISTRIBUTIONS FOR EACH ELEMENT OF THE
C ARRAY.
C
C

complex cktl(3),ckt2(3),ckt3(3),B(15),It,ITT,currl(3),Itdesign
complex bd(14),crrl(3)

real amp(3),ph(3)

open(unit=7,file=anldeg,Staus'.-,v)

pi = 2.0*asin(l.)

CKT 1(l) =(0.0,1.0)
CKT1 (2)-(0.0,50.0)

* CKT1 (3)=(0.0,560.0)

CKT2(1 )=(0.0,10.0)
* CKT2(3)-(0.0,50.0)

CKT3(1 )=(0.0,100.0)
CKT3(3)-(0.0,5.0)

write(5,*) Input value for XC12 and XC13, complex'
read(6,*)ckt2(2),ckt3(2)

C write(7,*)'Input capacitors XC12 & XC23 equalV,ckt2(2),ckt3(2)
C WRITE(7,*P'

write(7,*)' PI Network Parameters'
*write(7,*)' II

write(7,75)aimag(cktl (1)) ,aimag(cktl (2)) ,aimag(cktl (3))
75 format(3x,' XL13 -',2X,F6.2,' XC13 =',2X,F6.2,' XC31 =',2X,F6.2)

WRITE(7,*t P

write(7,76)aimag(ckt2(l)),aimag(ckt2(2)),aimag(ckt2(3))
76 format(3x,2 XL12 -',2X,F6.2,' XC12 =',2X,F6.2,' XC21 =',2X,F6.2)

WRITE(7,*)'

write(7,77)aimag(ckt3(l)),aimag(ckt3(2)),aimag(ckt3(3))
77 format(3x,' XL23 =',2X,F6.2,1 xc23 =',2X,F6.2,' XC32 =',2X,F6.2)

WRITE(7,*)'

* write(5,*)lInput the current at the input of antenna 1,
read(6,*)It

vrite(7,*)'The input current It =',It
WRITE(7,*)'

pN
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call curr(CKT1,CKT2,CKT3,It,B)e

write(5,*)b(1) ,b(2),b(3)

write(7,*)' The Resulting Current Distributions (complex)
write(7,*)' '1
write(7,*)'Il=' ,b( 1) %
write(7,*)'12=',b(2)
write(7 ,*)'13= ',b(3)
WRITE(7,*)' I
write(7,*) 'The Corresponding Magnitudes and Phases (degrees)'%
write(7,*)'

crrl (1)=b( 1)
crrl (2)=b(2)
crrl (3)=b(3)

call magphnorm.(3,crrl,amp,ph)

do i=1,3
ph( i)=ph( i)*l80.0/pi

end do

write(7,80)amp( ) ,amp(2) ,amp(3)
80 format(3x,' [ill =',2X,F7.2,' [.121 =',2X,F7.2,' [131 =',2X,F7.2)

WRITE(7,81 )ph(1) ,ph(2) ,ph(3)
81 format(3x,' PHS1 =',2X,F7.2,' PHS2 =',2X,F7.2,' PHS3 =',2X,F7.2)

ITT=B(1 )+B(4)+B(6)

write(5,*)'It =11 + 112 +113 is equal to',ITT
WRITE(7,*)''

call design(crrl,bd,Itdesign)

write(5,*) 'XC12=' ,bd(13) ,' XC23=' ,bd(14)
write(5,*)'Itdesign=',Itdesign

WRITE(7,*) 'Designed Pi Network Parameters'

vrite(7,*)'XC12=',bd(13),' XC23=',bd(14)
write(7,*)''

write(7,*)'It (input Current resulting from Design)'

write(7,*)'Itdesign=',Itdesign

stop
end

c
c
c

subroutine CURR(CKT1,CKT2,CKT3,It,B) %,.

c
c

Ir r

% %%
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c

c This program is the two-port analysis of a triangular three
c element antenna system.
c p

C
c ---- declare all variables ----------
C

INTEGER N,IA,M,IB,IJOB,IER
COMPLEX A(15,15),B(15),WA(255),CKT1(3),CKT2(3),CKT3(3),XL13,XC13
COMPLEX XC31,Z11,Z12,Z13,IT,C46,C02,PII,XI,X2,X3,X4,X5,X6
REAL wk(15)

C ------- matrix parameters ------------
C

IA=15
IB=15
N=15
M=1

C i

C ------ mutual impedances -------------
C

Z11=(36.5,21 .0)
Z13=(20.4,-14.18)
Z12=Z13

C
C ------ constants generated from separation distances
c
C rp
C ------ change above reals into complex #'s with zero reals 'p

C
C46=(0.0,46.19397663)
C02=(0.0,.018477591)
PII=(.382683432,0.0) -

c Pr
c ---- set constant matrix b back to zero---- I.
c

do 5 j=1,15
B(j)=(0.0,0.0)

5 continue
C
C ---- DECLARE INPUT CURRENT IT --------

B(1)=IT
C
C ----- INSERT GIVEN PI NETWORK VALUES OF REACTANCE -----
C

C ------ BEGIN CALCULATING THE MATRIX "A" COEFFS -
C

XL13=CKT1(1)
XC13=CKT1(2)
XC31=CKT1(3)

C
C CALL SUBROUTINE COEFF FOR FIRST TIME
C

CALL COEFF(C46,CO2,PII,XL13,XCI3,XC31,XI,X2,X3,X4,X5,X6)
C "

C ------ INSERT COEFFS INTO MATRIX "A"--------
C

. .
I . , , . • . _ . . . .
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A( 1 4) =(1 . ,0.

A(1,'6)=(l. ,0. )4
A(2,2)=(1 .,0.)
A(2,5)=( 1. ,0.
A(2 8)=( 1.,0.)
A( 3,3) =(1 .,.
A(3,7)=(1 .,0.)
A(3,9)=( 1.,0.)

C

A(4, 1)=X1l

A(4,11 )=X2

C

C A(5,6=( 1.,0.)

A(5, 10)=X3
A(5,11)=X4 .

C
C

A(6,1 )=zl2
A(6,2)=Zl3
A(6,3)=Z1 1
A(6, 10)=X2
A(6,1) )=X5

C

A(7,7)-(1. ,0.
A(7, 10) =X4
A(7,11)-X6

C
C ---- SECOND SET OF EQUATIONS ----
C ~J

XL1 3=CKT2 (1)
XCi 3=CKT2 (2)
XC31=CKT2( 3)

C
C
C

CALL COEFF(C46,C02,PIl,XL13,XC13,XC31,X1,X2,X3,X4,X5,X:6)

C -.----- LOAD COEFFS INTO MATRIX "A"--
C

A( 8,1)=Z1 1
A(8,2)=Zl2
A( 8,3) =Z1 3
A( 8,12) =X1
A( 8, 13) =X2

C

C A(9,4)( 1. .0.)
A(9, 12)=X3

A(9,13)=X4
C
C

A( 10,1) =Z1 2
A(10,2)=Z11

L% - % i- _
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V,

A(10,3)=Zl3
A( 10, 12)=X2
A(10,13V'=X5

C

A(1,3CX

A( 11, 5)=( 1., 0.)
A(11 ,12)=X4

C
C --- THIRD SET OF EQUATIONS--
C

XL1 3=CKT3 (1)
XC13=CKT3(2)
XC31=CKT3(3)

C

CCALL COEFF(C46,C02,PII,XL13,XC13,XC31 ,X1 ,X2,X3,x4,X5,X6)

A(12,1)=Zl2
A(12,3)=Zl3
A( 12,2) =Z1
A( 12, 14) =X1
A( 12, 15)=X2

C *

A(13,8)=(lO.
A( 13,14) =x3 s

A( 13, 15)=X4
C
C

A(14, 1)=Z12
A( 14,2)=Zl3
A(14,3)=Zll
A(14,14)-x2
A( 14, 15)2X5

C
C

A(15,9)=(l.,O.)
A(15,14)kX4
A(15,15)m-X6

C
C
C
C
C
C ---- SET FUNCTION DEFINITION--
C

IJOB=O

C ---- CALL MATRIX INVERSION IMSL ROUTINE----
C

CALL LEQ2C(A,N,4A,B,M,IB,IJOB,WA,WK,IER)
C
C --- OUTPUT CALCULATED VALUES -----------
C

write(5,*)PI1 = b(l)%
write(5,*,1I2 = ',b(2)
write(5,*) 13 = ',b(3)
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RETURNN
END

C
C
C THIS SUBROUTINE CALCULATES THE MATRIX COEFFS
C
C

c SURUTN CEFC6C2PIX1,13C1,X1,X2,X3,X4,X5,X6)

C
COMPLEX Tl,T2,X1 ,X2,X3,X4,X5,X6,C46,C02,PII,XL13,XCI3,XC31

C
C--------------ACTUAL COMPLEX ALGEBRA EQUATIONS ----
C

Tl=(PII+(C46/XL13))
T2=(c02+(PiI/XL13))
Xl=-(Tl+(C46*XC13))
X2=(C46/XL1 3)
X3=-(T2+(PII*XC13) )
X4=(PII/XL13)
X5--(T1+(C46*XC31) )
X6=-(T2+(PII*XC31)

C
C

RETURN
END

4'k
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C DESIGN.FOR
C
C THIS PROGRAM USES THE DESIGN TECHNIQUE DISCUSSED IN
C CHAPTER 5 TO DESIGN TWO OF THE PI NETWORK PARAMETERS OF THE
C INTERCONNECTION MEDIUM IN FIGURE 5. THE USER IS PROMPTED FOR
C THE DESIRED CURRENT DISTRIBUTIONS AND THE OTHER PI NETWORK
C PARAMETERS ARE ASSIGNED SOME CONSTANT MADNITUDE. THE SUBROUTINE
C DESIGN IS CALLED AND THE RESULTING PARAMETERS ARE LOADED INTO
C AN OUTPUT FILE. THE DESIGN SUBROUTINE PERFORMS THE ITERATIVE
C PROCESS ON THE DESIGN MATRIX UNTIL INSTRUCTED TO STOP.
C
C
C
C

dimension CKT1(3),CKT2(2),CKT3(2)
real amp(3),ph(3)
complex I1,12,I3,curr(3),It,bd(14),ccktl(3),cckt2(3),cckt3(3)

open(unit=7,file='design',status='new')

write(5,*)'Input magnitude and phase of desired current distribution'

write(7,*)'Input magnitude and phase of desired current distribution'

do i=1,3
write(5,*)'Input amp and phase for element #',i
read(6,*)amp(i),ph(i)
write(7,*)'For element #',i,' Mag & Phase=',amp(i),ph(i)

end do

call cmpn(3,amp,ph,curr)

CKT1(1)=10.0
CKT111)=1.0
CKT1(3)=5.0
CKT2(1)=CKT1(1)
CKT2(2)=5.0
CKT3(1)=CKT1(1)
CKT3(2)=7.5

c
c

call design(CKT1,CKT2,CKT3,curr,bd)

write(7,*)'
write(7,*)' . ............. NOW PERFORMING ANALYSIS ............
write(7,*)'

It=curr(1)+bd(1)+bd(3)
write(7,*)' It=',It

ccktl(1)=cmplx(0.0,cktl(1))
ccktl(2)=cmplx(0.0,cktl(2))
ccktl(3)=cmplx(0.0,cktl(3))
cckt2(1)=cmplx(0.O,ckt2(1))
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Tl=aimag(bd(13))
T2=real(bd( 13))
cckt2(2)=cmplx(tl ,t2)
cckt2(3)=(0.0,7.0E-6)
cckt3(1)=cmplx(0.0,ckt3(l)
cckt3(2)=cmplx(aimag(bd(14)),real(bd(14)))
cckt3(3)=(0.0,4.OE-7)
write(5,*)'cckt2=1,cckt2(),cckt2(2),cckt2(3)
write(5,*PIcckt3=1,cckt3().cckt3(2),cckt3(3)
write(5,*) ccktl=' ,ccktl (1),ccktl(2),ccktl (3)
call currl(ccktl,cckt2,cckt3,It)

C

C
c CKT1(1)=CKT1(1) + plus2
c if(CKT1(1).LE.600.O)goto 10
c CKT1(1)=startCl
C CKT1(2)=CKT1(2) +plusl
c if(CKT1(2).GE.-60.0)goto 10
c CKT1(2)=startC2
c CKT1(3)=CKT1(3) 4plusl
c IF(CKT1(3).GE.-.60.0)GOTO 10
C
C

close(7)
stop
end

C
C SUBROUTINE DESIGN
C
C THIS ROUTINE IS AN ITERATIVE DESIGN PROCEDURE
C WHICH USES GIVEN CURRENT DISTRIBUTIONS FOR THE ARRAY ELEMENTS
C AS INPUT. IT CALCULATES TWO USER DESIGNATED PI NETWORK
C PARAMETERS THAT SOLVE THE LINEARIZED SET OF 14 DESIGN
C EQUATIONS.
C I
C INPUTS: CKT1,CKT2,CKT3,CURR
C OUTPUTS: B
C
C

subroutine design(cktl ,ckt2,ckt3,curr,bd)

complex a(14,14),curr(3) ,vt(3) ,I1,12,13,b(14) ,yl,y2,y3,y4
complex ci ,c2,c3,c4,v2CO,VlBO,1 GVlB,GV2C,wa(224) ,bd(14)
integer n,ia,m,ib~ijob,ier,Q
real wk(14) ,XL13,XC13,XC41 ,Gxcl2,Gxc23,xl ,x2,x3,x4,x5,x6,c46,c02,pii
dimension CKT1 (3) ,CKT2(2) ,CKT3(2)

C
C SETS DIMENSIONS OF MATRIX

ia=14
ib=14
n= 14 '
m= 1
Q=0 '

pL7%

rf
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C
C SETS INITIAL GUESS VALUE FOR PI NETWORK PARAMETERS AND
C VOLTAGE VARIABLES.
C

Gxcl2=1.
GV1 B= (1., 1.)
Gxc23=1.
GV2C=(1.,1.)

C
C OUTPUTS GIVEN PI NETWORK PARAMETERS TO DATA FILE.
C

write(7,*)'THE given capacitor values are XC13,XC31,XC21,XC32'
write(7,*)CKT1(2),CKT1(3),CKT2(2),CKT3(2)
WRITE(7,*)'The given inductor values are equal to',CKT1(1)

C
C INITIALIZED THL MATRIX'S OF COEFFICENTS AND CONSTANTS (A & B).
C

100 do i=1,14
do j=1,14

a(i,j)=(0.,0.)
end do

end do

do i=1,14
b(i)=(0.,0.)

end do

C
C THE CALL TO CMMUL PERFORMS THE COMPLEX MATRIX MULTIPLICATION
C BETWEEN THE CURRENT DISTRIBUTIONS AND THE MUTUAL IMPEDANCES VALUES
C WHICH RESULTS IN THE VOLTAGES AT THE BASE OF EACH ARRAY ELEMENT.
C

call cmmul(curr,vt)

C
C LOADS PARAMETERS OF THE FIRST PI NETWORK INTO VARIABLES THAT ARE
C USED TO REPRESENT ALL OF THE PARAMETERS IN THE CALCULATIONS OF THE
C COEFFICENTS OF THE UNKNOWN VARIABLES. C
C

XL13=CKT1(1)
XC13=CKT1(2)
XC31=CKT1(3)

C
C CALL TO ROUTINE THAT PERFORMS THE COEFFICENT CALCULATIONS FOR THE
C FIRST PI NETWORK.
C

call numb(xl,x2,x3,x4,x5,x6,c46,cO2,pii,XL13,XC13,XC31)

C
C LOADIND OF MATRIX A WITH CALCULATED COEFFICENTS.

NI
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L

a(1,2)=(1.0,0.0)
a( 1,5)=( 1. ,O.)
a(2,4)=(1.,O.)
a(2,6)=(1.,O.)
a(3,7)=cmplx(xl ,O.)
a( 3,8)=cmplx(x2,O..
a(4,3)=( 1.*,O.)
a(4,7)=cmplx(O. ,x3)
a(4,a-i=cmplx(O. ,x4)
a(5,7)-cmplx(x2,O.)
a(5,8)=cmplx(x5,O.)
a(6,4)=(1 .,O.)
a(6,7)=cmplx(O. ,x4)
a(6,8)=cmplx(O. ,x6)

C
C LOADS PARAMETERS OF THE PI NETWORK CONTAININD ONE OF THE
C UNKNOWN PARAMETERS INTO THE VARIABLES THAT ARE BEING
C USED TO REPRESENT ALL OF THE PARAMETERS IN THE CALCULATIONS
C OF THE COEFFICENTS OF SOME OF THE UNKNOWN VARIABLES.
C

XL13=CKT2(l)
XC1 3=Gxcl 2
XC31=CKT2 (2)
VlBO=GVlB

C
C CALL TO ROUTINE THAT PERFORMS THE COEFFICENT CALCULATIONS FOR THE
C FIRST PI NETWORK.
C

call numb(xl ,x2,x3,x4,x5,x6,c46..c02,pii,XL13,XC13,XC31)

C
C CALCULATION OF MORE COEFFICENTS
C%

yl=-IVlBO*cmplx(C46,O.O))
y2=-(VlBO*cmplx(O.O,pii) )
ci 1=c46*XC13
cl=vt(1)-(cmplx(c11, 0.0) *Vb90)
c22=pi i*XC1 3
c2=-(cmplx(O.0,c22) *VlB0)

C
C LOADIND OF MATRIX A WITH CALCULATED COEFFICENTS.
C

a(7,9)=cmplx(xl ,O.)
a(7, 1O)=cmplx(x2,O. )
a(7, l3)=yl
a(8 ,1 )=(1.,.0.)
a(8,9)=cmplx(O. ,x3)
a(8,1O)=cmplx(D. ,x4)
a(8,13)=y2 '
a(9,9)=cmplx(x2,0.)
a(9,10)=cmplx(x5,O.)
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a(10,2)=(1.,0.)Pl
a( 10,9)-cmplx(0. ,x4)
a( 10, 10)=cmplx(0. ,x6)

C
C LOADS PARAMETERS OF THE PI NETWORK CONTAININD ONE OF TZ'E
C UL'KNOWN PARAMETERS INTO THE VARIABLES THAT ARE BEING
C USED TO REPRESENT ALL OF THE PARAMETERS IN THE CALCULATIONS
C OF THE COEFFICENTS OF SOME OF THE UNKNOWN VARIABLES.
C

XL1 3=CKT3 (l)
XCi 3=Gxc23
XC31=CKT3(2)
V2CO=GV2C

C
C CALL TO ROUTINE THAT PERFORMS THE COEFFICENT CALCULATIONS FOR THE
C FIRST P1 NETWORK.
C

call nunib(xl ,x2,x3,x4,x5,x6,c46,c02,pii,XL13,XC13,XC31)

C
C CALCULATION OF MORE COEFFICENTS
C

y3=-(V2C0*cmplx(c46,0.0))
y4--(V2C0*cniplx(0.0,pii))
c33=c46*XC1 3
c3=vt(2)-(crnplx(c33,0.0)*V2C0)
c44=pi i*xc1 3
c4=-(cmplx(0.0,c44)*V2C0) r

C
C LOADIND OF MATRIX A WITH CALCULATED COEFFICENTS.
C

a( 11,11 )=cmplx(xl, 0.)
a(11 ,12)=cmplx(x2,0.)
a( 11, l4 )=y3

a(12,5)'.I1.,0.) F'

a(12,14)=y4
a(12,11 )=cmplx(0. ,x3)
a(12,12)=cmplx(0. ,x4)
a( 13,11 )=cmplx(x2, 0.)
a(13,12)=cmplx(x5.0.)

a( 14,11 )=cmplx(0. ,x4)
a(14,12)=cmplx(0.,x6)

C
C CONSTANT MATRIX B FORMATION
C

b(1 )=-curr(2)
b(2)=-curr(3)
b(3)-vt(1 )
b(4)=(0. ,0. )
b(5)=vt(3)
b(6)=(0.0,0. )
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0
D$t /V=C1
b(B)=c2
b(9)=vt(2)
b(10)=(0.,0.)r
b( 11 )-c3
b( 12)=c4
b(13)=vt(3)
b(14)=(0. ,0.)

C
C CALL TO LINEAR EQUATION SOLVER IN IMSL SUBROUTINE LIBRARY.
C

ijob=0

call leq2c(a~n,ia,b,rn,ib,ijob,wa,wk,ier)

Q=Q+1

write(7,*)'I (number of iterations) =',Q
write(7..*)'

write(7,90)AIMAG(B(13)),REAL(B(13)),aimag(b(14)),real(b(14))
90 FORMAT(1XC12-',2X,F9.4,' +j',F9.4,' XC12=',2X,F9.4,' +j',F9.4)

C
C LOADING THE NEW FOUND VALUES INTO NEXT GUESS VARIABLES FOR NEXT
C ITERATION.
C

GVlB=b(9)
Gxcl2ureal(b(13))
GV2C-b( 11)
Gxc23-real(b(14))

if(Q.le.10)goto 100

write(7,*)'End of iterations'

do ij=1,14
bd( ii)=b( ij)
write(7,*)'For ij =',ij,' Bd(ij)=',Bd(ij)

end do W

return
end

C
C SUBROUTINE NUMB
C
C THIS ROUTINE CALCULATES THE COEFFICENTS OF THE UNKNOWN

C VARIABLES BASED ON THE INPUT CONSTANTS. THE INPUT CONSTANTS AREN

CC BASED ON THE MAGNITUDE OF THE GIVEN PI NETWORK PARAMETERS..C INPUT: XL13,XC13,XC31
C OUTPUT: X1,X2,X3,X4,X5,x6
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C

subroutine numb(xl ,x2,x3,x4,x5,x6,c46,c02,pii,XL13,XC13,XC31) "
real xl,x2,x3,x4,x5,x6,pi,pii,c46,c02,rad,tl,tll,t2,t22,conl

C
C CALCULATIONS BASED ON THE TRANSMISSION LINE LENGTH
C

pi=2.0*asin(1.0)
rad=3.0*pi/8.0
con1=sin(rad)
pii=cos(rad)
c46=50.0*conl
c02=conl/50.0

C
C CALCULATIONS BASED ON THE NETWORK PARAMETERS
C

tl=c46/XL13
ti1=pii+tl
xl=(t1-(c46*XC13))
x2=-tl
t2=pii/XL13
t22=c02-t2 .

x3=-(t22+(pii*XC13))
x4=-t2
x5=(tl1-(c46*XC31))
x6=-(t22+(pii*XC31))

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C SUBROUTINE CMMUL
C
C THIS ROUTINE PERFORMS THE COMPLEX MATRIX MULTIPLICATION
C OF A 3X3 AND A 3X1 MATRIX. IN PARTICULAR THIS ROUTINE CALCULATES
C THE VOLTAGE AT THE BASE OF EACH ARRAY ELEMENT. THE INPUT IS THE
C CURRENT FLOWING IN EACH ELEMENT.
C
C INPUT: CURR
C OUTPUT: VT
C
C

subroutine cmmul(curr,vt)

complex vt(3),curr(3),impe(3,3),a

C
C MUTUAL IMPEDANCE VALUES FOR ELEMENT OF THE EQUILATERAL TRIANGULAR

C ARRAY. W
C

I.
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impe( ,1)=( 0.4,-4.,8

impe(2,2)=(36.5,21.0)
impe(1 ,2)=(20.4,-14.18)
impe(313)=(20.4,-14.18)
impe(32)=(20.4,-14.18)
impe(3, 2)=( 36.5, 21.0)

ame3 =(0.0,0.0)

dod m=1,3

a=a~impe(k,m) *curr(m)
.end do

vt(k)=a
end do

return
enad

Fe5
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C
C PROGRAM MAINHC
C
C THIS PROGRAM IS USED TO TEST THE HILL CLIMBER
C OPTIMIZATION ROUTINE ON A VARIETY OF FLJ.CTION AS SPECIFIED
C BY THE USER IN THE SUBROUTINE FUNC. THIS PROGRAM CALLS THE
C MOST GENERAL VERSION OF THE OPTIMIZATION ROUTINE AND PASSES
C TO IT ANY VARIABLES THAT ARE INPUT BY THE USER. THESE VARIABLES
C ARE USUALLY THE NUMBER OF VARIABLES IN THE FUNCTION (NVAR), MAX
C AND MINIMUM STEP SIZE (MLIMIT,ACUR), NUMBER OF ITERATIONS FOR
C THE PARTICULAR RUN (TIME), AND THE INITIAL GUESSES FOR THE
C VARIABLES AND THEIR INITIAL STEP SIZE.
C
C

REAL X(1O) ,Dincrx(1O),mlimit,mlimitlO,acur,acurlO

Integer mdist,nvar,ihow,time

open(unit=7,file='mainhr',status='new')

write(5,*)'input # of variables in this calculation'
read( 6, *)nvar

c write(5,*)'Input distance of climb in one direction (mdist)'
c read(6,*)mdist

mdist=10*nvar

write(5,*)'Input starting values, and increments'
write(7,*)'Initial Guess for Magnitude and Step Size'
write(7,*)'

do io=l,nvar

write(5,*)'Please input guesses for variable #',io
read(6,*)x( io)

write(5,*)'input starting increments for x ,i
read(6,*)dincrx( io)

write(7,*)'Xi=',x(io),'Si=',dincrx(io),' for var. #',io

end do

c Input how many iterations for the particular run
c

write(5,*)'How many iterations'
read (6, *) time
write(7,*)'Number of iterations=',time
write(7,*)'

c
c Input the acurracy limit of this calculation
c

write(5,*)' Input maximun step size'
read(6,*)mlimit

Il
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write(7,*)'Maximum step Size =',mlimit
write(7,*)'

write(5,*)'lnput the minimun step size' i

Read(6, *)acur
write(7,*)'Minimun step size =',acur

write(7,*)'Variables move in same direction (mdist)',mdist

write(b,*)'Begin outputing HC data when?'
read (6, *) Ihow

CALL HC(nvar,x,time,dincrx,mdist, ihow,mlimit,acur)

close (7)
stop

end
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C SUBROUTINE HC
C
C THIS SUBROUTINE IS THE N-VARIABLE VERSION OF THE
C THE IhLL CLIMBER OPTIMIZATION ROUTINE DEVELOPED BY THE THESIS
C STUDENT. THIS IS THE MOST GENERAL PURPOSE ROUTINE AND IT
C IS USED FOR TESTING THE OPTIMIZATION PROCESS ON GIVEN
C QUADRATIC, LOGRYTHMIC, AND TRANSCENDENTAL
C FUNCTIONS.
C
C
C

SUBROUTINE HC(nvar,x,time,dincrx,mdist,ihow,mlimit,acur)

REAL OERRERR,what,acur,acurl0
real mlimit,mlimitlO,Merr(40000),Ediff
real arrx(l0,40000),x(lO),dx(lO),dincrx(lO)
real xsml(10),xlrg(10)
real bestx(10)

integer ch,wait,wait2,nvar,nvar2,ixdir(l0),idch(l0)
integer te,td,time,mdist,ihow

C
C INITIALIZATION OF COUNTERS
C

ch=1
oerr=l.0E30
I=0
K= 0
J=O
L=O
M=O

C
C VARIABLES USED IN STEP SIZE RESTRAINT CODE
C

mlimitl0=mlimit*10.0
acurl0=acur/10.0

C
C VARIABLES OF THE ROUTINE THAT ARE BASED ON THE NUMBER
C OF VARIABLES BEING ADJUSTED BY THE PROCESS.
C

nvar2=nvar*2
wait=nvar*4
wait2=nvar*2+l

c INITIALIZATION OF A COUNTERS AND DIRECTION INDICATORS THAT DESCRIBE
C THE PARTICULAR STATE OF EACH VAPIABLE DURING THE OPTIMIZATION.
C

P~z% W'rJ
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do io=1,nvar

dx( io)-1.0
ixdir( io)=l
xsml( io)=0.0
xlrg( io)=0.0
idch( io)=0

end do

C .

c This begins the Hclimber by calling fuction to be optimized
C

100 Call Func(err,x,nvar)

c This is iteration counter used in Hclimber

c

C
C THE ARRAY MERR(I) CONTAINS ALL THE VALUES OF THE HILL HEIGHT.
C EDIFF IS THE DIFFERENCE BETWEEN THE PRESENT HILL HEIGHT AND THE
C PREVIOUS HILL HEIGHT AND QEDIFF IS THE DIFFERENCE BETWEEN THE
C PRESENT HILL HEIGHT AND THE HILL HEIGHT OF LOWEST MAGNITUDE FOUND
C TO DATE.
C

Merr( I)=err
Ediff=abs(Merr(I )-Merr( I-i))
OEdi ff~abs(err-oerr)

c
c Printing option that prints out error,I, and Network prameters.
c

if( I.ge. Ihow)then
write(7,*)P
WRITE(7,15)I,err,ch,Ediff

15 Format(/' I= ' ,15,3x,'HH= ' ,E12.6,3x, 'Ch-',12,2x, 'HHdif=',El3.6)
write(7,*)P
write(7,*)'Magnitudes...............
write(7,l7)x(l),x(2),x(3),x(4)

17 Format(6x, 'Xl=' ,F12.6,2x, 'x2= ,F12.6.,2x, 'x3= ,Fl2.6,2x, 'x4= ,F12.6)

write(7,*)'

c write(7,l8)x(5) ,x(6) ,x(7) ,x(8)
c 18 Format(' X5= ',F16.6,3x,'x6=',Fl6.6,3x,'x7= ',F16.6,3x,'xS= ,F16.6)
c write(7,*)x(9)
c write(' *)'

write(7,*)P Step sizes..............
write(7, 16 )dincrx( 1),dincrx(2),dincrx( 3),dincrx(4)

16 Format(6x, 'sl= ,Fl2.6,2x, 's2=' ,F12.6,2x, 's3= ,F12.6,2x, 's4= ,F12.6)
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c write(7,21)dincrx(5),dincrx(6),dincrx(7),dincrx(8)
c 21 Format('ixl=',Fl4.7,lx,'ix2u',Fl4.7,lx,'ix3=',Fl4.7,lx
c $ ,'ix4=',F14.7)

write(7,*)'
write(7,*)' Direction ..............
write(7,19)dx(l),dx(2),dx(3),dx(4)

19 Format(6x,'dl=',F4.,lx, 'd2 ',F4.llx,'d3=',F4.llx,'x4=',F4.l)
write(7,*)'

endif

c"

c This loop loads the storage array with all values of variables through
C out the iteration sequence.
c I

do ix=l,nvar

arrx(ix,I)=x(ix)

end do

c
c These two do loops determine determine when a variable needs to be
c reduced in size when it has gotten relatively close to an answer

c and begins jumping around it.
C

IF(I.GE.wait)then

do ia-l,nvar

c
C J,K,L,M AND MM ARE USED TO COUNT THE LENGTH OF
C A PERIODIC PATTERN.
C

k=1 + wait2

m= 0
mm= 0

do ib=l,nvar2 v

C
C THIS STATEMENT DETECTS THE PERIODIC PATTERN.
C

if(arrx(ia,j).eq.arrx(ia,k))m=m+l
j=j+l
k=k+l

end do %

C
C THIS STATEENT PREVZNTS PERICZIC PATTERN FROM BETNG_
C DETECTED ONE RIGHT AFTER ANOTHER.
C
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if(l.le.idch(ia))goto 1

C
C IF PATTERN IS DETECTED THEN THE STEP SIZE OF THE PERIODIC VARIABLF
C IS REDUCED IN MAGNITUDE BY A FACTOR TEN AND THE MAGNITUDE OF
C THE VARIABLE IS RESET TO THE BEST VALUE FOUND SO FAR IN THE PROCESS.
C
C

if(m.eq.nvar2)then
idch(ia)=l + wait2

x(ia)=bestx(ia)
dincrx(ia)=dincrx(ia)/10.0

C write(7,*)'***********--variable is',ia
c write(7,*)'Decreased increment of X,dincrx=',dincrx(ia)
c write(7,*)'X= ',X(ia)

endif

1 end do

1=1+1

endif

c
c This loop keeps the step size of the variables from going out of limit.
c

do if=l,nvar

if(dincrx(if).le.acurlO)then
dincrx(if)=acur %

c write(7,*) --------------------
c write(7,*)'dincrxl has gone to low, increased it to',dincrxl

endif

end do

c
c This block of code determines when to increases the size (mag.) of the
c variable based on how far it has climber in one direction.
c

do ic=l,nvar

C
C THIS STATEMENT CHECKS THE VARIABLES DIRECTION INDICATOR
C AND COUNTS HOW MANY ITERTION THEY HAVE MOVED IN THE SAME

C DIRECTION.
C

if(ixdir(ic).eq.l)then
xlrg(ic):xlrg(ic)4l

else
xlrg(ic)=o

end if

*4%
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C
C THIS STATEMENT DOES THE SAME AS THE ABOVE FOR THE 0
C OPPOSITE DIRECTION.

if( ixdir( ic) .eq.o)then
xsml( ic)=xsml( ic)4-l

ele xsml( ic)=O
endi f

C
C THE NEXT TWO IF-THEN'S INCREASE THE STEP SIZE OF THE
C VARIABLES IF THEY HAVW MOVED CONTINUOUSLY IN THE
C SAME DIRECTION.
C

if(xlrg( ic) .eq.mdist)then
dincrx(ic)=dincrx( ic)*1O.O

c Write(7,*)'############--variable is' ,ic
c Write(7,*)'Increased increment of X,dincrx-',dincrx(ic)

xlrg( ic)=O
end if

C

if(xsml( ic) .eq.mdist)then
dincrx( ic)=dincrx( ic)*lO.O

c write(7,*)'#######U##### --variable is',ic
c write(7,*)'Increaesd increment of X,dincrx=',dincrx(ic) r.

xsml(ic)=O
end if

enddo

C
C IF THE STEP SIZE HAS GONE ABOVE THE LIMIT SPECIFIED BY THE USER
C THIS LOOP WILL REDUCE THE STEP SIZE BY A FACTOR OF TEN.
C

do if~l,nvar

if (dincrx( if ) .ge .inimitIO)then

dincrx( if)=mlimit
c write(7,*)'STEP SIZE GONE ABOVE LIMIT'
c write(7,*)'

endi f

end do

C

C This block takes the first initial step in a positive incrinental
c direction for X(l).
c

IF( I.EQ. l)THEN
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x(l)=x(l) + dx(l)*dincrx(l)

if(err.lt.oerr)oerr=err

GOTO 100
END I F

c
c This block of code changes the variable back to its previous value
c if changing it caused the hill height to increase. This block also
c adjusts the variables based on the direction indicators and step size
c magnitudes by evaluating the magnitude of the hill height.
c

do id=l,nvar

C
C THIS OUTER IF-THEN STATEMENT PERFORMS THE VARIABLE ADJUSTMENTS
C WHEN THE ROUTINE IS OPERATING ON THE LAST VARIABLE IN THE
C FUNCTION.
C

if(ch.eq.nvar)then

C
C THIS IF-THEN REDUCES THE LAST VARIABLE BACK TO IT'S
C PREVIOUS VALUE IF THE PRESENT HILL HEIGHT EQUALS THE
C PREVIOUS HILL HEIGHT. IT ALSO IMMEDIATELY ADJUSTS
C THE FIRST VARIABLE TO ITS NEW POSITION. THE STEP
C SIZE OF THE LAST VARIABLE IS INCREASED BY A FACTOR
C OF TEN.
C

IF(EDIFF.eq.0.0)THEN

x(nvar)=x(nvar)-dx(nvar)*dincrx(nvar)
x(l)=x(1)+dx(l)*dincrx(l)

DINCRX(NVAR)=DINCRX(NVAR)*10.0

c WRITE(7,*)'ERR - PREVIOUS ERR LT iE-6,Bx=',x(nvar)
c WRITE(7,*)'I=',I,' id=',id,' step=',dincrx(nvar)

goto 70
ENDIF

C
C THE SAME AS ABOVE IS PERFORMED WHEN THE PRESENT
C HILL HEIGHT EQUALS THE BEST HILL HEIGHT FOUND
C TO DATE.
C

IF(OEDIFF.eq.0.0)THEN

x(nvar)=x(nvar)-dx(nvar)*dincrx(nvar)
x(1)=x(1)+dx(1)*dincrx(l)
DINCRX(NVAR)=DINCRX(NVAR)*10.0

WRITE(7,*)'Oerr and Err are to e-6'
c write(7,*)'EEEERRRRRRRRRRR = OOOeeerrrr'
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L wxr , 'L= I,* a= ,icl, step=' ,dncrx(nvar)

goto 70

ENDIF

C
C IF THE HILL HEIGHT IS LOWER THEN THE LAST VARIABLE
C IS KEPT AT IT'S NEW MAGNITUDE AND THE FIST VARIABLE

C IS ADJUSTED.
C

if(err.lt.oerr)x(1)=x(1) dx(1)*dincrx(1)

C
C IF THE HILL HEIGHT IS GREATER THE LAST VARIABLE%
C IS REDUCED AND FIRST VARIABLE IS ADJUSTED IMMEDIATELY. 0
C 4

if(err.gt.oerr)then
x(nvar)=x(nvar)-dx(nvar)*dincrx(nvar)
x(l)=x(1)+dx(1)*dincrx(1)

endif
goto 70
endi f

C
C THE FOLLOWING IF-THEN STATEMENTS ARE FOR ALL OF THE ITERATIONS
C BESIDES ADJUSTMENT OF THE LAST VARIABLE ( IN OTHER WORDS
C MOVEMENT OF THE VARIABLES IN SEQUENCE 1,2,3 ....... N, BUT
C NOT N. MOVEMENT OF THE LAST VARIABLE (N) IS HANDLED ABOVE.
C CH TRACKS WHICH VARIABLE IS CURRENTLY BEING ADJUSTED. ",
C

IF(CH.EQ.ID .AND. EDIFF.eq.0.0)THEN

TE=ID+1 p
x(id)=x(id)-dx(id)*dincrx(id)
x(te)=x(te)+dx(te)*dincrx(te)
DINCRX(ID)=DINCRX(ID)*10.0

c WRITE(7,*)'ERR - PREVIOUS ERR LT IE-6,Bx=',x(id)
c WRITE(7,*)'I=',I,' id=',id,' step=',dincrx(nvar)

goto 70

ENDIF 
r

IF(CH.EQ.ID AND. OEDIFF.eq.0.0)THEN

TE=ID+I
x(id)=x(id)-dx(id)*dincrx(id)
x(te)=x(te)+dx(te)*dincrx(te)
DINCRX(ID)=DINCRX(ID)*10.0

c WRITE(7,*)'Oerr and Err are to e-6'
c write(7,*)'EEEERRRRRRRRRRR = OOOOeeerrrr'
c WRITE(7,*)'I=',I,' id=',id,' step=',dincrx(nvar)

%"
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goto 70
ENDIF

IF(-;..eq.id .and. err.lt.oerr)then

td=id+l
c if(id.eq.nvar)td=l

x(td)=x(td)+dx(td)*dincrx(td)

endif

If(ch.eq.id .and. err.gt.oerr)then
td=id+l
x(id)=x(id)-dx(id)*dincrx(id)
x(td)=x(td)+dx(td)*dincrx(td)

endi f

end do

c
c This loop changes the variables direction based on the magnitude of
c the hill height. If the variables adjustment causes the hill height
c not to be reduced below the current best hill height then the
c particular variables direction indicators are reversed so the variable
c can move in the other direction.
c

h.

70 do ie=l,nvar

if(ch.eq.ie .and. ixdir(ie).eq.l .and. err.gt.oerr)then .
ixdir(ie)=0
dx(ie)=-l.0
goto 20

endif

if(ch.eq.ie .and. ixdir(ie).eq.0 .and. err.gt.oerr)then
ixdir(ie)=l
dx(ie)=l.0
goto 20

endif

end do

c
c This block keeps track of which variable is to be changed next.
c

20 if(ch.le.nvar)then
if(ch.eq.nvar)ch=0
ch=ch+l

endif

c

ON7S
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c This block records value of the best variables and current values
c as the Hclimber proceeds thru the climb.
c

if (err. it .oerr) then

write(5,*)'err=',err,' at I=',I
oerr=err

do ip=l,nvar%
bestx( ip)=arrx( ip,) I)

end do

end if

C

c This tells machine to do another iteration
c

IF(I.LT.time)GOTO 100
write(7,*)' END OF RUN'
write(7,*)'
write(7,*)'Values of tl'e Variables corresponding to HHltd'
write(7,*)PXl=',bestx(l),'X2=',bestx(2),'B3=',bestx(3)
vrite(7,*)'Hill Height =',oerr

return
end

% %I

-'AZ !:' A I6.
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C
C SUBROUTINE FUNC
C
C THIS SUBROUTINE IS CALLED BY THE HILL CLIMBER OPTIMIZATION
C ROUTINE. IT CALCULATES THE M4AGNITUDE OF THE HILL HEIGHT BASED
C ON WHATREVER FUNCTION IT CONTAINS. THE FUNCTIONS CONTAINED
C IN THIS SUBROUTINE ARE USE TO TEST THE PERFORMANCE OF THE
C THE OPTIMIZATION ROUTINE DEVELOPED BY THE THESIS STUDENT.
C

subroutine func (err, x ,nvar)

integer nvar
real x(nvar),err
pi=3. 141593
q-x( 1)

err- (x(2)-2O.O*SIN(O.O5*x(l)))**2 + O.1*(x(2)**2 + x(l)**2)

c err-(exp(-x~l))-1O.O*cos(q)+O.5*sin(q)-X(2)**2.+exp(-x(2) ))**2.

c err-(q**5-4.5*q**4+4.55*q**3+2.675*q**2-3.3*q-1.4375-x(2))**2

c err=100*(x(2) -x(1)**2)**2 + (l-x(1))**2

c err=(x(l)**2 -78.7)**2

c ERR - ERRi + ERR2 + ERR3 + ERR4 + ERR5 +- ERR6

return
end
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C
C PROGRAM V6PATT '

C THIS PROGRAM PERFORMS THE HILL CLIMBER OPTIMIZATION
C ON THE SIX CAPACITIVE PARAMETERS OF THE PI NETWORKS IN AN ATT.'T
C TO ENFORCE THE DESIRED CURRENT DISTRIBUTION ON THE ARRAY ELEMENTS.
C THIS PROGRAM CALLS CAP6HC.FOR WHICH IS AN ADAPTED HILL CLIMBER ..

C OPTIMIZATION SUBROUTINE THAT HAS BE MODIFIED TO ANALYSIS THE
C EQUILATERAL ARRAY DESIGN PROBLEMS. THE NECESSARY INPUTS FROM
C THE USER ARE ENTER IN THIS PROGRAM AND PLOTTING OF THE RESULTING
C RADIATION PATTERN CAN BE DONE BY CALLING SUBROUTINE PATTI
C 4

C
C
C

REAL Tlght,OERR,ERR, length,kl,what,SWR,rt,Mit,phit,Pin,pi,acur,acurlO
real scale,indl,jnd2,ind3,mlimit,mlimitl0,max,null
real x(10),dincrx(10)
real FAMP(4),FPH(4),Cap(l0)
real bestx(l0),amp(3) ,ph(3),ampC(3),phC(3),Ll,L2,L3

complex Zll,Z12,Z13,It,Il,I2,I3,cktl(3) ,ckt2(3),ckt3(3),B(15)
complex Sl(4),w(3),voltl,Zin,Rfcoeff,cj, T123(3)
COMPLEX Bl23(3)

integer start,often,ch,wait,wait2,nvar,nvar2,ixdir(l0) ,idch(lO) ,numl
integer te,td,time,mdist, ihow, icount,dir(lO,40000)

open(unit=7,file='v6PATT one',status='new')

c
c Self and Mutual impedances values for the 3 elements

CS

zllu(36.5,21.0)
zl2s(20.4,-l4.18)
zl3=(20.4,-14.18)

pi-2.0*asin(l.0) *4

c
c These vars. define the dimensions of the 3 element triangular array t
c 4

c if(Tlght.eq.0.125)length-4.0
c if(Tlght.eq.O.25)length-2.0
c if(Tlght.eq.0.5)length-l.0 S

lengthw4 .0 ~S

C vrite(5,*)Plnput lenght of T.L.' 4

C read(6,*)Tlght

TLGHT=.125

C write(5,*)' Given inductor values (ohms).'
C read(6,*)indl,ind2,ind3
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IND=l0. .0
IND2-15.0
IND3-22. 0

write(7,*)'The Inductive Reactances (ohms).'
write(7,*)'XL13=',INDl,' XL12=',IND2,' XL.23=',1ND3
write(7,*)'

cktl(l)-cmplx(0.0,indi)
ckt2(l)-cmplx(0.0, ind2)
ckt3(l)-cmpix(0.0. ind3)

Ll=INDl/(2.0*PI*7 .0E6)
L2-~IND2/(2.0*PI*7. 056)
L3-IND3/(2 .0*PI*7.0E6)

WRITE(7,*)'At 7 MHz the Inductor Values are (henries),'
WRITE(7,*) 'Li-' ,Ll, ' L2=',L.2,' L3=' ,L3
write(?,*)

write(7,*)' Initial guess and step size for the Caps ',ip
write(7,*)' %

do ip-l,6%

write(5,*) Initial guess and step size for Cap #',ip
read(6,*)X(ip) ,dincrx(ip)
write(7,*)'For Cap#',ip,'Xi.I',x(ip),'Si-',dincrx(ip)

end do

write(7,*)' '

WRITE(5,*)'INPUT LENGTH(# OF ITERATIONS)?
READ(6,*)TIME
WRITE(7,*)'Number of Iterations -',TIME

WRITE(5,*)'MAX STEP SIZE?'
READ(6,*)MLIMIT

write(7,*)'MAXIMUM STEP SIZE?',iulimit

write(5,*)'MINIMUM STEP SIZE (acurracy)?'
Read(6, *)acur
WRITE(7,*)'I
WRITE(7,*)'MINIMUM STEP IS ',ACUR

c These are the input/given current distribution on 3 elements

write(7,*)'

do ir-li3

write(5,*)'Input Magnitude and Phase'
read(6, *)amp( ir) ,ph( ir)

end do

W9
-'itN.C
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write(7,*)'Input Omn and On'
read(6, * )max null

WRITE(5,*)' MAX=',MAX,' NULL ',NULL
write(7,*)' I
write(7,*)'Current Distribution Corresponds to a Om and On of'

WRITE(7,*)'Om -',MAX,' On -',NULL

c Change amp and phase to real and imaginary component
C

CALL 04PN(3,AMP,PH,W)

C
c Change complex current values to normal amplitudes and phase
C

CALL HAGPHNORM(3,W,AMP,PH)

CALL C3PN(3,AMP,PH,W)

write(7,*)' I
write(7,*)'Amps Normalized =',amp(l),amp(2),amp(3)
write(7,*)'Phase (Deg.) a' ,ph(l)*1BO.O/pi,ph(2)*1BO.O/pi.ph(3)*lBO./pi

c 5

c Calculate It (input current into array) using normalized given curr.
C

write(7,*)'

write(7,*)'It (Desired input current) -',It

CALL CAP6HC(cktl,ckt2,ckt3,PI ,W, IT,X,DINCRX,TIME,MLIMIT,ACUR,S1)

CALL MAG PH NORM (4, Si,FAMP, FPH)

rt"'180. O/pi

write(5,*)' 1-1,I
write(7,*)' I-',I
write(7,*)'
vrite(7,*) 'AMPS=' ,Famp(l) ,Famp(2) ,Famp(3), 'ITMa' ,FAMP(4)
write(7,*)'PHASE=',Fph(l)*rt,Fph(2)*rt,Fph(3)*rt,UITPH-',FPH(4)*RT
write(7,*)''
write(7,*)'Best Capacitative Reactances'

write(7,*)x(l) ,x(2) ,x(3) ,x(4)
write(7,*)x(5) ,x(6)
WRITE(7,*)'
write(7,*)'Capacitance of elements at 7 MHz'
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c Calculates the Capacitance of L.C. Netwirk Parameters
c

do ip=1,nv&.-

cap( ip)=l.0/(x( ip)*2.0*pi*70OE6)
write(7,*)' Cap. of ',ip,' is',cap(ip),' Farads'

end do

Zin=voltl/Sl (4)

Rfcoef f=(Zin-( 50.0, 0.0 ))/(Zin+( 50. 0.0 .0))
SWR=(l+cabs(Rfcoeff))/(l.O - cabs(rfcoeff))

write(7,*)'I
write(7,*)'Zin=',Zin,' SWR=',SWR
write(7,*)' Itbest=',Sl(4),'Vl=',voltl

write(5,*)'Zin found-',Zin
write(5,*)' SWR=',SWR

c
c Calculate values for It for singlr dipole problem
c

Pin-( ((CABS(Sl(4) ))**2.0)*REAL(ZIN))

scale-sqrt( 1000.0/Pin)

mit=sqrt( (1000.0)/36.5)

phit-0.O

c numl-l
c call patt3(scale,Famp,Fph,pi,length,numl,mit,phit)

numl 2
Famp(l)=l.0

do ip=l,3
Famp( ip)-Famp( ip)*scale

end do

call patt3(scale,Famp,Fph,pi,length,numl,mit,phit)

CLOSE(7)
STOP
END

INCLUDE 'CAP6HC. FOR'
INCLUDE 'FTJNC6C. FOR'
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*ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C
C
C
C

SUBROUTINE CAP6HC(Cktl,ckt2,ckt3,pi,w, It,x,dincrx,time,mlimit,acur,Sl)

REAL OERR,ERR,what,acur,acurl0
real mlimit,mlimitl0,Merr(40000),Ediff
real arrx(l0,40000) ,x(l0) ,dx(lO) ,dincrx(l0)
real xsml(l0),xlrg(lO)
real bestx(l0),pi,BSTIN(3)

complex B(l5) ,It,w(3) ,Sl(4) ,cktl(3) ,ckt2(3) ,ckt3(3)

integer ch,wait,wait2,nvar,nvar2,ixdir(lO),idch(lO)

integer te,td,time,mdist,ihow

IHOW=t ime-l

ch= 1
oerr-l 0E30
I=0
K-0
J-0
L=-0

mlimitlo-mlimit*l0.0
acurIO-acur/l0.0

nvar-6
mdist=nvar*10
nvar2=nvar*2
wait-nvar*4
wait2-nvar*2+1

c
c Initialize points for Hclimber vars. and increments
C

do io-l,nvar

dx(io)-l.0
i xd i r(i o)= 1
xsml( io)=0.0
xlrg( io)=0.0
idch( io)=0

end do

c
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c This begins the Hclimber by calling fuction to be optimized
C

100 Call Func6c(pi,w,x, it,b,cktl,ckt2,ckt3,err,S1)

C
c This is iteration counter used in Hcliznber
c

c
c This block takes the first initial step in a positive incrmental
c direction for X(l).
C

IF (I .EQ. 1) THEN
x(l)=x(l) + dx(l)*dincrx(l)
write(7,*>'
WRITE(7,*)'Initial Hill Height =',err
if(err. lt.oerr)then

oerr=err
endif
GOTO 100

ENDIF

ccccccccccccccccccccccccccccccccccccccccccCcCCCcc

Merr (I) -err
Ediff-abs(Herr( I)-Herr( 1-1))
OEdiff-abs(err-oerr)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c Printing option that prints out error,I, and Ntwk. elements as desired
c

if( I.gt. Ihov)then
write(7,*)' '

vrite(7,*)'Number of Iterations,HHi,Variable Seq., & HH(i)-HH(i-l)'
write(7,*)
WRITE(7,15)I ,err,ch,ediff

15 Format(/' I- ',15,2x,'HH- ',E12.6,2x,'Ch-',I2,2x,'HHdif-',E12.6)
vrite(7.,*)'Varibles present value .... '

vrite(7,*)'
write(7,17)x(l),x(2),x(3) ,x(4)%

17 Format(6x,'Xl=',F12.6,2x,'x2=',Fl2.6,2x,'x3-',F12.6,2x,'x4-',F12.6)
vrite(7.*)'
write(7,18)x(5) ,x(6)

18 Format(6x,'X5=',F12.6,2x,'x6=',Fl2.6)

write(7,*)''
write(7,*)' Step sizes..............
write(7,*)' I

write(7,16)dincrx~l),dincrx(2),dincrx(3),dincrx(4)
16 Format('sl-',F12.6,lx,'s2=',Fl2.6,lx,'s3-',F12.6,lx

$ ,'s4w',Fl2.6)
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write(7,21)dincrx(5) ,dincrx(6)
21 Format( 's5=' ,F12.6,lx, 's6=' ,Fl2.6)

write(7,*)'
write(7,*)' Direction.............
write(7,*)P
write(7,19)dx(l),dx(2) ,dx(3),dx(4)

write(7,*)'

end if

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

c This loop loads the storage array with all values of variables through
c out the iteration sequence.
C

do ix=l,nvar

arrx( ix, I )x( ix)

end do

C
c These two do loops determine determine when a variable needs to be
c reduced in size when it has gotten relatively close to an answer
c and begins jumping around it.
c

IF( I.GE.wait)then

do 1 ia-l,nvar

k-l + wait2

mm=0

do 2 ib=l,nvar2

if(arrx( ia,j) .eq.arrx( ia,k) )m-m~l
j-j+l
k-k+l

2 continue

if(l.le.idch(ia))goto 1

if (n.eq.nvar2)then
idch(ia)=l + wait2
x( ia)=bestx( ia)
dincrx( ia)=dincrx( ia)/lO.O

c write(7,*)'***********--variable is',ia
c write(7,*)'Decreased increment of X,dincrx=',dincrx(ia)
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endif

1 continue
1-1+1
endif

C
c This ioop keeps the acurracy of the variables from going out ot limit
C

do ifl,nvar

if(dincrx( if) .le.acurlO)then
dincrx( if)=acur

c write(7,*) -----------------------------
c write(7,*)'dincrxl has gone to low, increased it to' ,dincrxl

endif

end do

c
c This block of code determines when to increases the size (mag.) of the
c variable based on how far it has climber in one direction.
c

do 3 ic-l,nvar

if(ixdir(ic) .eq.l)thenrh
xlrg( ic)axlrg( ic)+l

else
xlrg( ic)=O

endif
c
c

if(ixdir(ic) .eq.O)then
xsml( ic)kxsml( ic)+l

else
xsmlC ic)'-O

endif

if(xlrg( ic) .eq.mdist)then
dincrx( ic)-dincrx( ic)*lO.O

c Write(7,*)'############--variable is1 ,ic
c Write(7,*'lncreased increment of X,dincrx=',dincrx(ic)

endif
c
c

if(xsml Cic) .eq.mdist)then
dincrx( ic)=dincrx( ic)*lO.O

c write(7,*)'############ --variable is1 ,ic
c write(7,*)'Increaesd increment of X,dincrx=',dincrx(ic)
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xsml (ic) =0
endif

3 continue

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCC

do if=l,nvar

if(dincrx( if) .ge.mlimitlO)then

dincrx( if)=mlimit
c write(7,*)'STEP SIZE GONE ABOVE LIMIT'
c write(7,*)'

endif

end do

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C

c This block of code changes the variable back to its previous value
c if changing it caused the error to increase. This block also increases
c or decreases the variable based on the current direction of the var., by
c the value in incrx(?).
c

do 4 id=l,nvar

if(ch.eq.nvar)then N

IF(EDIFF.eq.0.0)THEN

x(nvar)-x(nvar)-dx(nvar) *dincrx(nvar)
x(l)-x(l)+dx(l)*dincrx(l)

DINCRX(NVAR)-DINCRX(NVAR) *10.0

c WRITE(7,*)'ERR - PREVIOUS ERR LT lE-6,Bx=',x(nvar)

c WRITE(7,*)'I=',I,' id=',id,' step=',dincrx(nvar)

goto 70
END IF

IF(OEDIFF.eq.0.0)THEN

x(nvar)-x(nvar)-dx(nvar) *dincrx(nvar) I

x( l)=x(l)+dx(l)*dincrx(l)
DINCRX(NVAR)=DINCRX(NVAR)*10.0

c WRITE(7,*)'Oerr and Err are =to e-6'
c write(7,*) 'EEEERRRRRRRRRRR = OOOeeerrrr'
c WRITE(7,*)'I=',I,- id=',id,' step=',dincrx(nvar)

goto 70%

END IF

W,

UNA
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if (err. lt.oerr)x( 1)=x( 1)+dx(1) *dincrx( 1)
if (err. gt .oerr) then

x( nvar)=x(nvar)-dx(nvar) *dincrx(nvar)

endif
goto 70
end if

IF(CH.EQ.ID .AND. EDIFF.eq.O.0)THEN

TE=ID+1
x( id)-x( id)-dx( id) *dincrx( id)
x(te)=x(te)+dx(te)*dincrx(te)
DINCRX( ID) =DINCRX( ID)*10.0

c WRITE(7,*)'ERR - PREVIOUS ERR LT IE-6,Bx='.,x(id)
c WRITE(7,*)'I=I,I,' id=',id,' step=',dincrx(nvar)

goto 70

ENDIF

IF(CH.EQ.ID .AND. OEDIFF.eq.0.0)THEN

TE-ID+l
x( id)-x( id)-dx( id) *dincrx( id)
x(te)-x(te)tdx(te)*dincrx(te)
DINCRX( ID)-I)INCRX( ID)*10.0

c WRITE(7,*)'Oerr and Err are =to e-6'
c write(7,*)'EEEERRRRRRRRRRR 00OOOeeerrrr'
c WRITE(7,*)'=' , I,' id=' ,id,' step=',dincrx(nvar)

goto 70
END IF

IF(ch.eq.id .and. err.lt.oerr)then

td-id+l
c if(id.eq.nvar)td-1

endif

If(ch.eq. id .and. err.gt.oerr)then
td= id+1
x( id)-x( id)-dx( id) *dincrx( id)
x(td)=x( td)+dx(td)*dincrx( td)

end if
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4 continue

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c This loop chpriges the variables direction basd on the value of error

c

70 do 5 ie-l,nvar

if(ch.eq.ie .and. ixdir(ie).eq.l .and. err.gt.oerr)then
ixdir( ie)-0
dx( ie)--l.O
goto 20

endif

c

if(ch.eq.ie .and. ixdir(ie).eq.0 .and. err.gt.oerr)then
ixd i r (ie) =1
dx( ie)=l.0
goto 20

endif

5 continue

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
c
c This block keeps track of which variable is to be changed next.
c

20 if(ch.le.nvar)then
if(ch.eq.nvar)ch-0
ch-ch+1

endif

c
c This block records value of the best variables and current values
c as the Hclimber proceeds thru the climb.
c

if(err. lt.oerr)then

oerr-err

do ip-l,nvar
bestx( ip)=arrx( ip, I)

end do
endif

c
c This tells machine to do another iteration
c

IF(I.LT.time)GOTO 100

do iz-l,nvar

x( iz)=bestx( iz)

OL IL
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'

end do

write(7,*)' END OF RUN'
'rite(7,*)' '
write(7,*)'Lowest Hill Height Magnitude -',oerr
write(7,*)'

return
end

'S

rS

S..
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccCCCCCCCCC
C
C SUBROUTINE FUNC6C
C
C THIS SUBROUTINE PERFORMS THE ANALYSIS OF THE EQUILATERAL
C ARRAY BY CALLING THE ANLYSUBR SUBROUTINE. THE SIX CAPACITIVE
C REACTANCES BEING ADJUSTED BY THE HILL CLIMBER OPTIMIZATION
C ROUTINE ARE SENT TO ANLYSUBR FOR CALCULATION OF THE RESULTING
C CURRENT DISTRIBUTION. THE HILL HEIGHT TS THEN CALCULATED AND
C RETURNED TO THE OPTIMIZATION ROUTINE FOR EVALUATION. THE DESIRED
C CURRENTS ARE INPUT AS VARIABLE W AND THE PI NETWORK PARAMETERS
C ARE IN VECTORS CKT1,CKT2,CKT3.
C
C INPUTS: PI,W,X,IT,CKTI(1),CKT2(l),CKT3(l)
C OUTPUT: ERR,S1,B
C
C

SUBROUTINE FUNC6C(PI,W,X,ITB,CKT1,CKT2,CKT3,ERR,SI)

REAL err,x(10),Pi,AMPCN(4),PHCN(4),Tlght

COMPLEX cktl(3),ckt2(3),ckt3(3),B(15),sl(4),w(3),It,B123(4)

C
C THIS VARIABLE IS THE LENGTH OF THE TRANSMISSION LINE
C BETWEEN THE ARRAY ELEMENTS AND THE PI NETWORKS.

C

TLGHT=.125

C
C THE PRESENT VALUES FOR THE SIX CAPACITIVE REACTANCES ARE LOADED
C INTO THE VARIABLES TO BE PASSED INTO THE ANALYSIS ROUTINE.
C

cktl(2)-cmplx(O.O,x(l))
ckt2(2)-cmplx(O.O,x(2))
ckt3(2)=cmplx(O.O,x(3))

cktl(3)-cmplx(0.0,x(4))
ckt2(3)-cmplx(OO,x(5))
ckt3(3)=cmplx(O.O,x(6))

C
c This is a call to subr. curr in file anlysubr.for which solves
c the analysis of the array.
c

call curr(pi,Tlght,cktl,ckt2,ckt3,it,b)

c
c This loops detects when the variables have gone below zero and
c adds the square of the variables magnitude to the hill height.
c

c err8=O.O
c do ip=l,nvar
c

k A
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c if(x(ip).lt.0.0)then
c
c err8'.err8 + x(ip)**2
c write(7,*)'x=',ip,' gone LT. 0.0',x(ip)
c
c endif

c end do

c
c This loop is a warning block of code which detects when the
c currents for the array elements found by the analysis routine
c are zero (undetermined). This means that there is no solution
c for the present values of the network parameters.
c 0
c

do ip-l,3

if(real(b(ip)).eq.0.0 .and. aimag(b(ip)).eq.0.0)then
write(7,*)' I it
write(7,*)'WARNING CURR',ip,' .... to ZEROES'write(5,*)'WARNING CURR',ip,.. .... to ZEROES'

write(7,*)'
endif

bl23(ip)=b(ip)
end do -'

b123(4)-b(l)+bM4+b(6)

c
c Changes complex current distributions in normalized magnitude
c and phase vectors.
c

CALL MAGPHNORM(4,B123,AMPCN,PHCN)

c
c Changes noimalized magnitude and phase vectors into complex values.
c

CALL CMPN(4,AMPCN,PHCN,SI)

c S
c This is the calculation of the hill height, which is the
c difference between the desired and calculated values.
c

err2=(real(w(3))-real(sl(3)))**2.+(aimag(w(l))-aimag(sl(l)))**2.
err3=(aimag(w(2))-aimag(sl(2)))**2.
err4=(aimag(w(3))-aimag(sl(3)))**2.

err=errl+err2+err3+err4 + err8

RETURN
END

-: t x



211

ccccccCCCCCCcCCCCccCcCcCcccCCCCccccccCCcccCccccCCccCCCccCCCC
C
C SUBROUTINE HAGPHNORM
C
C This subroutine is used to convert a complex number
C into Phasor form (magnitude and phase). Once in
C phasor form the magnitude and phases are then normalized
C with respect to the current flowing on the first antenna.
C That is the first complex number in cmplxl which is cmplxI(l).
C
C
C Input V,CMPLXI
C
C Output MAGTN,PHSEN
C
C

SUBROUTINE HAGPHNORM(V,CMPLXI ,MAGTN, PHSEN)

INTEGER A,V
REAL AGTN(V),PHSEN(V)
COMPLEX CMPLXI(V)

C
C CALCULATIONS OF THE MAGNITUDE AND PHASE OF A INPUT COMPLEX NUMBER.
C

DO A-1,V

MAGTN(A)-CABS( 24PLXI (A))
PHSEN(A)=ATAN2(AIAG(CMPLXI (A)) ,REAL(CMPLXI (A)))

END DO

C
C NORMALIZATION ACCOMPLISHED BY DIVISION OF THE MAGNITUDES
C AND SUBTRACTION OF THE PHASES.
C

DO A=2,V

MAGTN(A)=MAGTN(A)/MAGTN( 1)
PHSEN(A)=PHSEN(A) -PHSEN( l7)

END DO

MAGTN (1) -1.0
PHSEN(1)-0.0

RETURN
END

*1,

'Ij"A ,
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C
C SUBROUTINE MPN
C
C
C THIS SUBROUTINE WAS DESIGNED TO CALCULATED THE .OMPLEX
C VALUE FROM INPUT MAGNITUDE AND PHASE VECTORS.
C GIVEN THE MAGNITUDE AND PHASE OF A VECTOR THE COMPLEX
C NUMBER REPRESENTATION IS FOUND USING THE FORMULA
C
C M*COS(o) + j*M*SIN(O)
C
C INPUTS : V,MAGN,PHSE
C OUTPUT : C4PLXN
C
C

SUBROUTINE CMPN(V,MAGN, PHSE,CMPLXN)

INTEGER A,V
REAL MAGN(V),PHSE(V)
COMPLEX CMPLXN (V)

DO A=1,V

CMPLXN(A)wMAGN(A)*COS(PHSE(A)) + (0.0,1.0)*MAGN(A)*SIN(PHSE(A))

END DO

RETURN
END

I-• • I q", € r

... % .,.'-Pk', w r,.
.  

. . . ., . ,.., , . .. . .. . ..... . ..p.

.... ... - hi" /"" -- ,-,r , . e ' . e- ' '-.'e *' ' ,'i''%-"-'"-' ','',' '



213

CCCCCccCCCCCCCCccCccccCcCCCCCCCCCCCccCcc CCCCCCCCCCCCccCC CCCCCCCCCcCccCCCCC
C
C SUBROUTINE CURR
C
C THIS SUBROUTINE PERFORMS THE EVALUATION
C OF THE 15 LINEAR COMPLEX EQUATIONS THAT DESRCIBE THE
C EQUILATERAL THREE ELEMENT ARRAY. THE PI NETWORK PARAMETERS
C (3 CAPACITORS AND 6 INDUCTORS) ARE INPUT INTO THIS ROUTINE
C AND ARE CONSTANTS PROVIDED BY THE USER. THE PARTICULAR
C MAGNITUDE OF THESE PARAMETERS AND THE LENGTH OF THE
C TRANSMISSION LINES ARE WHAT DETERMINE THE COEFFICENTS
C OF THE 15 UNKNOWN VARIABLES. THIS ROUTINE USES A LINEAR
C EQUATION SOLVER ACCESSED FROM THE IMSL LIBRARY OF FORTRAN
C SUBROUTINES.
C
C
C

subroutine CURR(pi,Tlght,cktl,CKT2,CKT3,It,B)

c
-declare all variables----------

C

INTEGER N,IA,M,IB,IJOB,IER
COMPLEX A(15,15),B(15),WA(255),CKT1(3),CKT2(3),CKT3(3),XLI3,XCI3
COMPLEX XC31,Zl1,Zl2,Z13,IT,C46,C02,PII,XI,X2,X3,X4,X5,X6
REAL wk(15),Tlght,pi,L46,L02,LII

c

c ------- matrix parameters ------------
c

4.
IA=15
IB=15
N-15
M=1

C
C ------ mutual impedances-------------
C

Zl=(36.5,21.0)
Z13=(20.4,-14.18)
Z12=Z13

C
C ------ calculation of constants based on transmission line -------
C

L46=50.0*(sin(3.0*pi*Tlght))
L02=(sin(3.0*pi*Tlght))/50.0
LII=cos(3.0*pi*Tlght)

C46=cmplx(0.0,L46)
C02=cmplx(0.0,L02)
PII=cmplx(LII,0.0)

c

~' - Iw ~ %~~.VV ~ e~'
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c ---- set constant matrix b back to zero--
C

do J-1,15
en oB(j )=(0.0.0.0)

C
C ---- DECLARE INPUT CURRENT IT --------
C

B(1)=IT

C
C ---- BEGIN CALCULATING THE MATRIX "A" COEFFS----
C

XL13=CKT1(1)
XC13=CKT1 (2)
XC31=CKT1( 3)

C
C CALL SUBROUTINE COEFF FOR FIRST TIME
C

CALL COEFF(C46,C02,PII ,XL13,XC13,XC31,X1,X2,X3,X4,X5,X6)

C
C ---- INSERT COEFFS INTO MATRIX *A" -------
C

A(1,4)=(1. .0.)

A(2,2)=(1. ,0.
A(2,5)(1. ,0. )
A(2,8)=(1. .0.)
A(3,3)=(1. .0.)
A(3,7)=(1. .0.)
A(3,9)=(1. .0.)

C
C

A(4, 1)-Zl
A(4,2)-Zl2
A(4,3)=Z13
A(4, 10) =XI
A(4,11)=X2

Ck

CA(5,6)=(l. .0.)

A(5,10)=X3 
'

A(5,11)=X4 %
C
C

A(6, 1)=Z12
A(6,2)=Zl3
A(6,3)=Zll
A(6,10)=X2
A(6,11)=X5

C

:I



215

C
A(7,7)=(1. ,O. )
A(7, 10) =X4
A(7,11)=X6

C
C ---- SECOND SET OF EQUATIONS ---
C

XL13=CKT2( 1)
XC13=CKT2( 2)
XC31=CKT2 (3)

C
C

CALL COEFF(C46,C02,PII ,XL13,XC13,XC31,Xl,X2,X3,X4,X5,X6)

C
C ---- LOAD COEFFS INTO MATRIX "A"---
C

A(8,1)=Z11
A(8,2)=Z12
A(8,3)=Zl3
A(8, 12)=Xl
A(8,13)=X2

C
C

A(9,4)w(l. ,0.)
A(9,12)=X3
A(9, 13) =X4

C
C

A(1O,1)-Zl2
A(10,2)=Zll
A(10,3)=Z13
A(10,12)-X2
A(10,13)=X5

C
C

A(11,5)=(1. ,0.) '

A(11,12)=X4
A(11,13)=X6

C
C --- THIRD SET OF EQUATIONS ---
C

XL13=CKT3( 1)
XC13=CKT3(2)
XC3J.=CKT3(3)

C
C

CALL COEFF(C46,C02,PII ,XL13,XC13,XC31,Xl,X2,X3,X4,X5,X6)
C
C

A(12, 1)=zl2
A(12,2)=Zll
A(12,3)=Zl3

A(12,14)=Xl
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A(12,15)=X2

C
A13 ,8)=( 1.,0.)

A(13,14)=X3
A(13,15)=X4

C
C

A(14,1)=Zl2
A(14,2)=Z13
A(14,3)=Z11
A(14,14)=X2
A(14,15)=X5

C A(15,9)=(1. ,O.)

A(15,14)=X4
A(15,15)=X6

C

C ---- SET FUNCTION DEFINITION--

C

IJOB= 0

C
C ---- CALL MATRIX INVERSION IMSL ROUTINE -------
C

CALL LEQ2C(A,N,IA,B,M,IB,IJOB,WA,WK,IER)

RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C SUBROUITNE COEFF
C
C THIS ROUTINE CALCULATED THE COEFFICENTS OF THE
C UNKNOWN VARIABLES BASED ON THE LENGTH OF THE TRANSMISSION
C LINE BETWEEN THE ARRAY ELEMENT AND THE PI NETWORK AND THE
C MAGNITUDE OF THE NETWORK PARAMETRS
C
C INPUT: C46,C02,PII,XL13,XCI3,XC31
C OUTPUT: X1,X2,X3,X4,X5,X6
C
C

SUBROUTINE COEFF(C46,C02,PII ,XL13,XC13,XC3I ,XI ,X2,X3,X4,X5,X6)

C
C--------------- DECLARE COMPLEX VARIABLES---------------
C
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COMPLEX T1,T2,X1,X2,X3,X4,X5,X6,C46,CO2,PII ,XL13,XC13,XC31

C
C--------------- COMPLEX ALGEBRA CALCULATIONS -------CI

T2-(CO2+(PII/XL13))

X2- (C46/XL13)

X3u-(T2+(PII*XC13))

X5--.(Tl+(C46*XC31))
x6--~(T2+(Pii*xc3l))

RETURN
END
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cccCCcCCCCcCCCCCCCCcccccccCCCccCCCCCCcccCcccCCCcCCCcCCcCCcC CCC S
C SUBROUTINE PATT3

C

C This subroutine calculates the radiation pattern
C for the three element equilateral triangular array used
C to demonstated the design methods of this thesis.
C The amplitudes and phases of the elements of the array
C are input from one of the design procedures. This routine
C is called by one of the design procedures to display the
C pattern generated by the solved current distributions.
CC INPUT : SCALE,AMP,PH,P1,LENGTH,NUMI,MIT,PHIT '

C OUTPUT: KY
C
C

subroutine patt3(scale,amp,ph,pilength,numl,Mit,phit)

real amp(3),p(3),ph(3),x(3),y(3),xy(360,2),Etot(360)
real scale,d,±ength,kl,pi,Emax,mit,phit,er(3),ei(3)
integer numl

c
c These are the coordinates of the element on the XY plane
c The length variable is the reciprocal of the separation
c distance between the elements. KL is used to convert
c the geometric phase shift to radians.
c

kl=2.0*pi/length
x(l)=0.O
x(2)-0.5
x(3)=l.0
y(l)=0.0
y(2)-.8660 25404
y(3)=o.O

c
c Use to plot the pattern of a single dipole.
c

if(numl.eq.l)then
n=l
amp(l)=Mit
p(l)=phit
XMl)0.0
YMl)0.0

else
n=3endif

Emax=0.0

do 1=1,360

Theta=float( I) *pi/180.0

%%
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do J=l,n

if(x(J).eq.0.0 .and. y(J).eq.0.0)goto 14

C
C P is the geometric phase shift associated with the physical
C location of the elements with respect to each other.
C

P(J)=kl*sqrt(X(J)**2.+Y(J)**2.)*cos(atan2(Y(J),X(J))-Theta)
14 p(l)=0.0

C
C Er(J) is the real component of the complex current on
C the element and Ei(J) is the imaginary.
C

er(J)=amp(J)*cos(ph(J)+P(J))

ei(J)=amp(J)*sin(ph(J)+P(J))

end do

C
C This is for the single dipole calculations.
C

if(numl.gt.l)then
do J=2,3

er(l)=er(l)+er(J)

ei(1)-ei(1)+ei(J)

endif

C Etot(I) is the magnitude of the radiating current
C as seen at all I angles of observation.
C I

Etot(I)=Sqrt(er(l)**2.+ei(l)**2.)
if(Etot(I).gt.Emax)Emax=Etot(I)

end do

write(7,*)' Emax=',Emax

C
C This 360 degrees loop calculates the XY coordinates of the
C radiation pattern of the array.
C

do 1=1,360
theta=float(I)*pi/180.0
ETOT(I)=(Etot(I)*41.0)
xy(I,l)=ETOT(I)*cos(theta)
xy(I,2)=ETOT(I)*sin(theta)

end do

C
C Calls the plotting routine which display the pattern to the screeen.
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C
call plot(xy,numl)

return
end

.............. p_ O e- %. wA .
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C
C This subroutine uses the PlotlO graphics library
C on the Vax 11/780 at the University of Louisville.
C It is used to plot radiation patterns. A matrix
C containing the X an,. Y' coordinates of the pattern
C is passed into this routine and move and draw commands
C are used to draw this pattern.
C
C Input :XY,NUMI

C

subroutine plot(xy,numl)

dimension xy(360,2)
real radd,ang,x,y,pi
integer numi

call grstrt(4014,1)

if(numl.eq.l)then
call newpag

endif

call vindov(-750.0 ,750.0,-750.0,750.0)

call move(-750.0,0.0)
call draw(750.0,0.0)
call move(0.0,750.0)
call draw(0.0,-750.0)

call move(xy(l,l),xy(1,2))

do 1-2,360
X-xy( ,1)
yuxy(I,2)
call draw(x,y)

end do

call grstop

return

end

&4L& -
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